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1 

Solid-state NMR spectroscopy:  Hamiltonians 
 

___________________________________________________________________________ 

 

Hamiltonians:  Htotal = H0 + HCS + HDI + HQ + HK + HJ  (1) 

 

 

H0 :   Zeeman interaction  IzB0 of nuclear spins I 

in the external magnetic field B0    10
9
 s

-1
 

HCS :   chemical shielding interaction caused 

by the electrons surrounding the nuclei   5  10
3
 s

-1
 

HDI :   dipolar interaction with magnetic dipoles  

of other nuclei in the local structure    5  10
4
 s

-1
 

HQ :   quadrupolar interaction of the electric quadrupole 

moment with the electric field gradient   10
7
 s

-1
 

HK :   Knight shift due to the Fermi contact interaction 

between the nuclei and conduction electrons  10
5
 s

-1
 

HJ :   indirect nuclear-nuclear coupling by simultaneous 

coupling of the electrons      10
3
 s

-1
 

 

In most applications of solid-state NMR spectroscopy, HJ is neglected since this 

splitting is overlapped by the stronger solid-state interactions 

 

Generally, the Hamiltonians H can be written in the form:   

 

H = C 
 zyx ,,,

I  R

  A     

     

where I and A are vectors of the nuclear spin and, e.g., of the magnetic field, while 

R

 is a second rank tensor describing the interaction and C is a typical constant 

of each interaction :   

 

   H = C[Ix, Iy, Iz]










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
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RRR
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







z

y

x

A

A

A

   (3) 

 

In the principal axis system (PAS) of the microscopic unit, the tensor R

 consists 

of diagonal elements only. All other elements vanish.  
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Solid-state NMR spectroscopy:  Hamiltonians 
 

___________________________________________________________________________ 

 

Another way to describe the Hamiltonians in the principal axis system of the 

microscopic unit is [Freude1]: 

 

    HC


2

0k






k

kq

(-1)
q 
TkqVk-q    (4) 

 

with the irreducible spherical tensors Tkq (spin term) and Vkq (local term). In Table 

1, the operators of the Hamiltonians HCS, HDI, HQ are summarized. 

 

Table 1 

Elements of the irreducible spherical tensors Tkq and Vkq of the Hamiltonians H ( 

= CS, DI, Q) in the principal axis system (PAS) [Freude1]. 

 

interaction/ 

parameter 

chemical shielding 

interaction, 

HCS 

homonuclear 

dipolar interaction
*
, 

HDI 

quadrupolar 

interaction, 

HQ 

C   





4
2 02ki  

)12(2 II

eQ
 

T20 

3

2
IzB0 

6

1
(3IziIzkIiIk) 

6

1
[3Iz

2
I(I+1)] 

T21 

2

1
IB0 

2

1
(3IiIzkIziIk) 

2

1
(IIz-I-zI) 

T22 0 IiIk I
2
 

V20 
)(

2

3
isozz    3

2

3 

ikr  eqVzz
2

3

2

3
  

V21 0 0 0 

V22 )(
2

1
yyxx    

0 
)(

2

1
yyxx VV   

*) for heteronuclear dipolar interactions, T20 must be substituted by 
6

1
IziIzk  

 

If the Hamiltonian is given by H = H’ + H’’ with [H0, H’] = 0 and [H0, H’’]  

0, then H’ is the secular part. 

 

Generally, the secular part is used to describe the NMR line shapes. In this case, 

only the tensor elements with k = 2 and q = 0 in Table 1 have to be considered. 
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Solid-state NMR spectroscopy:  Hamiltonians 
 

___________________________________________________________________________ 

 

The tensors V’kq (local term) in the laboratory axis system (LAB) are related to Vkq 

in the principal axis frame by the Wigner rotation matrices D
l
m’m(R): 

 

   V’kq = 




k

kq '

 D
k
q’q(R) Vkq      (5) 

 

where D
k
q’q(R) denote matrix elements of three-dimensional rotations. 

 

The matrix elements D
k
q’q(R) can be written as: 

 

   D
k
q’q() = exp{iq’} d

k
q’q() exp{iq}   (6) 

 

with the Euler angles ,  and (see [Rose1]). 

 

The elements d
k
q’q() of the reduced Wigner matrices depend on the angle  only. 

 

Table 2 gives components of V’kq, which were transformed from the principal axis 

system (PAS) into the laboratory axis system (LAB) by the Euler angles  and  

via equation (6). 

 

Table 2 

Elements of the irreducible spherical tensor V’kq for the different Hamiltonians H 

( = CS, DI, Q) transformed into the laboratory axis system (LAB) [Freude1]. 

 

interaction/ 

element 

chemical shielding 

interaction 

homonuclear dipolar 

interaction between Ii 

and Ik
*
 

quadrupolar 

interaction 

V’20 
)(

2

3
isozz   F(,) 













 

2

1cos31

2

3
2

3

ik

ikr


 

2

3
eqF(,) 

 

with:    F(,) = 













2cossin

22

1cos3 2
2

   (7) 

and    
isozz

yyxx









  (asymmetry parameter of the chemical  

                                                               shielding interaction)   (8) 

or   
zz

yyxx

V

VV 
   (asymmetry parameter of the quadrupolar  

   interaction)    (9) 
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Solid-state NMR spectroscopy:  Chemical shielding interaction 
 

___________________________________________________________________________ 

 

In the principal axis system (PAS), the Hamiltonian of the chemical shielding 

interaction is given by: 

 

   HCS =  IB0       (10) 

 

with the shielding tensor 



In the PAS, the shielding tensor is reduced to its diagonal elements xxyy andzz

with zz yy xx . 

 

The shift of the resonance frequency in the field B0 is due to the'zz component in 

the laboratory frame (LAB).  

 

A rotational transformation with the Euler angles  and  leads to: 

 

  'zz = xx sin
2
cos

2
 + yy sin

2
sin

2
 + zz cos

2
  (11) 

 

It is convenient to introduce the isotropic part iso, the shielding anisotropy  and 

the asymmetry parameter (see also eq. (8)): 

 

   iso = 
3

1
(xx+yy+zz)      (12) 

 

    = (zziso)       (13) 

 

   






 )( xxyy
        

 

Transformation of the Hamiltonian into the LAB leads to: 

 

  HCS =  IzB0[iso +  













2cossin

22

1cos3 2
2

] (15) 

 

corresponding to a resonance frequency  of: 

 

   = 0[(1-iso ) 













2cossin

22

1cos3 2
2

]  (16) 
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Solid-state NMR spectroscopy:  Chemical shielding interaction 
 

___________________________________________________________________________ 

 

In a liquid sample, the rapid molecular reorientation averages to zero the angle-

dependent terms in equation (16) and for  follows: 

 

   = 0(1 iso)        (17) 

 

For a polycrystalline sample, the Euler angles  and  vary from crystallite to 

crystallite and the resonance frequency ranges from  = 0(1 iso  to  

 = 0[1 iso /2)(1+)] in Figure 1. 

 

Typically observed line shapes are given in Figure 1 for the general case (left) and 

for the case of an axial symmetry, i.e.,  (right).

 

In the latter case, often following assignments are used: 

 

   = zz         (18) 

 

   = xx = yy        (19) 

 

 

 

    
1 2 



  xx                          yy                                           zz           

1 2




xx  =yy
zz  

 

Figure 1 

Line shapes of powders samples caused by chemical shielding interaction, general 

case (left) and axial symmetry (right). 
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Solid-state NMR spectroscopy:  Dipolar interaction 
 

___________________________________________________________________________ 

 

In the laboratory frame, the Hamiltonians of dipolar interactions are given by (see 

Tables 1 and 2): 

 

a) Homonuclear dipolar interaction (i = k) 

 

  Hhomo.DI = 





4

02ki  












 

2

cos311
2

3

ik

ikr


(3IziIzkIiIk)   (20) 

 

b) Heteronuclear dipolar interaction 

 

  Hhetero.DI = 





4

02ki  












 

2

cos311
2

3

ik

ikr


IziIzk    (21) 

 

By using the raising and lowering operators I+ = Ix + iIy and I= Ix – iIy, the 

Hamiltonian can be written: 

 

  HDI = 





4

02ki   ik

ikr
2

3
cos31

1
 [IziIzk

4

1
I+iIk + IiIk)]  (22) 

 

With    DI = (





4

0ki )/rik
3
       (23) 

 

and    A = ( ik2cos31 )IziIzk      (24) 

 

   B = 
4

1
 ik2cos31 I+iIk + IiIk]    (25) 

follows  

HDI = DI(A + B)        (26) 

 

Term A is the so-called static part, which describes the modification of the value of 

B0 at the sites of the resonating nuclei and causes the dispersion of the Zeeman 

levels and Larmor frequencies. 

 

Term B is called flip-flop term and describes the polarization transfer between 

neighboring spins, also called spin diffusion. 

 

For a heteronuclear coupling, the Zeeman levels are not equidistant and, therefore, 

term B vanishes. 
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Solid-state NMR spectroscopy:  Dipolar interaction 
 

___________________________________________________________________________ 

 

Spectra due to the dipolar coupling of isolated spin pairs with I = ½ consist of two 

subspectra with inverse signs, corresponding to the two transitions with m = 1. 

 

For a homonuclear dipolar coupling, two absorption lines (fixed angle ik) occur at 

the frequencies (see Fig. 2, left): 

 

   1 = 0  
4

3
DI( ik2cos31 )       (27) 

and 

2 = 0  
4

3
DI( ik2cos31 )     (28) 

 

For heteronuclear dipolar coupling, term B (eq. (25)) disappears and the lines occur 

at:  

   1 = 0  
2

1
DI( ik2cos31 )     (29) 

and 

2 = 0  
2

1
DI( ik2cos31 )     (30) 

 

In the case of a powder, the different angles ik of the spin pairs in different 

crystallites cause patterns as shown in Figure 2, right: 

 

 

       

3/2 (3cos -1) DI ik

2

          

3/2 DI

 
 

Figure 2 

Theoretical spectra caused by pairs of homonuclear spins in a single crystal (left) 

and in a powder (right). 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 

___________________________________________________________________________ 

 

About 100 isotopes exhibit a nuclear spin I > ½, i.e., are quadrupolar nuclei. 

 

For nuclei with spin I > ½, the electric charge distribution (r) in the nucleus is not 

spherical and causes an electric quadrupole moment eQ [Fraiss1]: 

 

  eQ = (r) r
2
 (3cos

2-1) dv       (31) 

 

where the integration is taken over the whole space of which dv is the volume 

element. 

 

In this case, to the orientation of the magnetic moment µ in B0 is added the 

orientation energy EQ of the electric quadrupole moment eQ in the electric field 

related to the distribution of charges in the local structure: 

 

  EQ =  (r) V(r) dv        (32) 

 

with the potential V(r) of the electric field. The electric field gradient is a traceless 

second rank tensor: 

 

  Vij = 
ji

V



 2

   with   i, j = x,y,z      (33) 

 

In the principal axis system, the electric field gradient Vij is diagonal with Vzz  

Vyy  Vxx and Vzz = eq. 

 

According to Tables 1 and 2, the Hamiltonian HQ of the quadrupolar interaction is: 

 

  HQ = 
)12(4

2

II

qQe
[3Iz

2
I(I+1)] 














2cossin

22

1cos3 2
2

  (34) 

 

The asymmetry parameter  of the electric field gradient is given by equation (9). 

 

Commonly, the quadruple coupling constant Cqcc (also Cq or QCC) is given by: 

 

   Cqcc = 
h

qQe2

        (35) 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 

___________________________________________________________________________ 

 

while the quadrupole frequency is defined by: 

 

   Q = Q / 2 = 
hII

qQe

)12(2

3 2


= 

)12(2

3

II

Cqcc
    (36) 

 

If HQ << H0 and at high field, the quadrupolar interaction is treated as a 

perturbation. 

 

The first order perturbation energy Em
(1)

is: 

 

   Em
(1)

 = 
6

1
Q(3cos

2-1)[3m
2
-I(I+1)]    (37) 

 

The energy difference between states m-1 and m gives the resonance frequencies: 

  

   m


 = 0 + 
2

1
Q(3cos

2 -1)(1-2m)    (38) 

 

In the case of m = ½, which corresponds to the central transition, follows m
(1)

 = 

. 

 

Hence, the first order perturbation term describes the splitting into central and 

satellite transitions as illustrated for a spin I = 3/2 system in Figure 3. 

 

                     

m

3/2

1/2

+1/2

+3/2

  Zeeman                Zeeman + quadrupolar 
interaction                       interaction

central
transition

satellite
transition

satellite
transition

  = (1/2) (3cos -1)Q

2



 0 +  2

 0 -  2

0  

 
 

Figure 3 

Level scheme of a spin I = 3/2 system with quadrupolar interaction. 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 

___________________________________________________________________________ 

 

The spectra resulting for spin I = 3/2 involved in quadrupolar interactions are given 

in Figure 4. 

 

      




  

                 

Q

Q
Q      

 

Figure 4 

Theoretical spectra of a spin I = 3/2 system with quadrupolar interaction in a single 

crystal (left) and a powder (right). 

 

 

The relative intensities of the central transitions (CT) and satellite transitions (ST) 

of nuclei involved in quadrupolar interactions are given by: 

 

  I(CT,ST)  = 
)12)(1(

)1()1(

2

3





III

mmII
      (39) 

 

Relative intensities I(CT,ST) of spin I = 1 to I = 5/2 systems: 

 

  Transition type:  ST     ST     ST     ST     CT     ST      ST     ST     ST            

  ___________________________________________________________ 

 I = 1     1/2  1/2  

 

 I = 3/2   3/10  4/10  3/10 

 

 I = 2   2/10  3/10  3/10  2/10 

 

 I = 5/2   5/35  8/35  9/35  8/35  5/35 

 
 

In the cases of I = 1 and I = 2, no central transition occurs. 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 

___________________________________________________________________________ 

 

The first-order and second-order Hamiltonians are given by equations (40) and 

(41):  

   HQ
(1) 

= 
6

Qh
[3Iz

2
I(I+1)]       (40) 

   

 HQ
(2)

 = 
0

2

9

Qh

























  2222

2

2112

2

2

1
)1(

4

1
)1(22 VVIIIIVVIIII zzzz  (41) 

 

with the tensor elements V2k in Table 1 (Freude1). The second-order frequency 

functions are given by equations (42) and (43):  

 

m,m+1
(2) 

= 
0

2

18

Q
 {[24m(m+1)-4I(I+1)+9]V21V2-1 

  + [6m(m+1)-2I(I+1)+3]V22V2-2}       (42) 

 

 

m,-m
(2) 

= 
0

2

18

Qm
 {[4I(I+1)-8m

2
-1]V21V2-1  

  + [2I(I+1)-2m
2
-1]V22V2-2}        (43) 

 

for single and symmetric quantum transitions, respectively.  

 

In the laboratory frame and in the case of the central transition (m = 1/2   m = 

+1/2), the second-order frequency function 1/2
(2)

 is [Freude1]: 

 

  1/2
(2)

 =  









4

3
)1(

6 0

2

II
Q




(Acos

4
cos

2
C  (44) 

 

with  

  A =  2cos
8

3
2cos

4

9

8

27 22      (45) 

 

  B =  2cos
4

3
2cos2

2

1

4

15 222      (46) 

 

  C =  2cos
8

3
2cos

4

1

3

1

8

3 222       (47)
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 

___________________________________________________________________________ 
 

Equation (44) allows the calculation of the field-dependent second-order 

quadrupolar frequency shift qs of the center of gravity cg of the central transition 

in relation to the resonance position observed without quadrupolar interaction: 

 

  qs = cg – 0 (1-) 



 )
3

1
1(

4

3
)1(

30

1 2

0

2














II

Q      (48) 

 

 

The difference  between the center of gravity of the satellite transitions (mean 

resonance position of the first satellites) and of the central transition is given by 

[Freude1]: 

 

 

   = 









3
19

30

2

0

2




Q        (49) 

 

 

Hence, there are four methods to determine Q: 

 

1) In the case of weak quadrupolar interaction, the distance of the singularities of 

the satellite transitions are evaluated or simulated. 

 

2) In the case of strong quadrupolar interaction, the shape in the central transition 

is simulated. 

 

3) The field-dependent second-order shift is evaluated. 

 

4) The difference between the centers of gravity of the satellite transitions 

(average resonance position of the first satellites) and of the central transition 

is evaluated. 
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Solid-state NMR spectroscopy:  Knight shift 
 

___________________________________________________________________________ 

 

In metals and metallic particles, the spins of conduction electrons with ‘s’-

character are polarized by B0 and give rise to an additional shift. This shift is due to 

the Fermi contact interaction of the conduction electrons with the nuclear spins. 

 

The contact interaction results in an isotropic hyperfine interaction constant 

[Fraiss1]: 

   a = 
F

ne

2
)0(

3

8



       (50) 

 

where 
F

2
)0(  denotes the average density of the conduction electron wave 

function with the energy EF at the nuclear position. 

 

Due to high mobility of the conduction electrons, an average value of all hyperfine 

splittings is observed, leading to the relative shift  or Knight shift K: 

 

   K = 
0


 = 

ne

Pa




       (51) 

 

with the Pauli susceptibility P  of the conduction electrons and the gyromagnetic 

ratios e and n of the electrons and the coupled nuclei, respectively. 

 

The temperature dependence of the Knight shift is given by the Korringa relation: 

 

   K
2
 = 

TT
S

k n

e

B 1

2

1

4 

















       (52) 

 

with the spin-lattice relaxation time T1, the temperature T, and the scaling factor S, 

which has the value 1 for non-interacting electrons in a three-dimensional system 

(not on a surface!). 

 

The Knight shift K is orders of magnitude larger than the chemical shielding iso 

and has normally a positive sign: 

 

    = 0(1 - iso + K)      (53) 

 

The Hamiltonian HK is given by:  

 

    HK =  IB0       (54) 
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Solid-state NMR spectroscopy:  The method of moments 
 

___________________________________________________________________________ 

 

An important approach to evaluate the shapes of solid-state NMR signals is the 

method of moments. 

According to van Vleck, the free induction decay G(t) can be described by a 

Taylor evolution of the moments Mn [Abra1]: 

 

   G(t) = 
 








0 !n

n

n

M
n

ti
      (55) 

 

with the n-th moment   

Mn = 
















)()(

)()()(

00

000





dg

dgn

    (56) 

 

and the frequency function g(-0) describing the intensity distribution. Since in 

the most cases, the odd-numbered moments vanish, G(t) follows to: 

 

   G(t) = 1  .......
!4!2

4422 t
M

t
M

      (57) 

 

Using equation (55), the even-numbered moments can be determined: 

 

   M2n = (1)
n
 

n

n

dt

d
2

2

G(t)t=0      (58) 

 

According to equation (56), the second moment can be obtained by an evaluation 

of the spectrum using: 

 

   M2 = 




 )()()( 00

2

0  dg     (59) 

 

For Gaussian line shapes, also the full line width at half amplitude 1/2 can be 

used to determine the second moment M2: 

 

   1/2 = 22ln2
1

M


      (60) 
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   M2 = 
2ln2

2

2/1

2  
       (61) 

Solid-state NMR spectroscopy:  The method of moments 
 

___________________________________________________________________________ 

 

Considering the signal shapes in Figures 1 and 2 with 
13   CS
 and 

DIDI 
2

3
 , the second moments of the chemical shielding interaction and the 

dipolar interaction, respectively, are given by: 

 

   M2,CS = 











3
1

5

)(

9

4 22
CS      (62) 

and 

   M2,DI = 
5

2
DI

       (63) 

 

For a signal broadening by a quadrupolar interaction, the second moment of the 

central transition is given by: 

 

   M2 = 2

7

23
qs         (64) 

 

with 

   qs= -

































3
1

4

3
)1(

30

2

0

2





II

Q
    (65) 

 

 

 

A more general approach is to calculate the second moment via the Hamiltonian 

H of the interaction  under study according to: 

 

   M2 = 
  
 2

2
,

x

y

ITr

IHTr         (66) 

 

For the secular part of the homonuclear dipolar interaction follows: 

 

  M2,II = 
 













 










N

i

N

ik ik

ik

I
rN

II
1

6

2
22

024 1

2

cos311

4
)1(3






     (67) 
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Solid-state NMR spectroscopy:  The method of moments 
 

___________________________________________________________________________ 

 

For the secular part of the heteronuclear dipolar interaction follows: 

 

  M2,IS = 
 













 










N

i

N

k ik

ik

SI
rN

SS
1 1

6

2
22

0222 1

2

cos311

4
)1(

4

3 




    (68) 

 

with the powder average: 

 

  
5

1

2

cos31
2

2













 

powder

ik
      (69) 

 

In the following, a simple approach for calculating the second moment of powder 

signals broadened by dipolar interactions is demonstrated. Generally, the second 

moment M2 due to dipolar interactions of an ensemble of I and S spins is the sum 

of the homonuclear term M2,II and the heteronuclear term M2,IS, which can be 

described by: 
 

   M2 =  
66

S

S

I

I

r

C

r

C
        (70) 

with  

   CI = 22

2

0

4
)1(

5

3
III 












   (10

68
)     (71) 

 

   CS = 22

2

0

4
)1(

15

4
SSS 












    (10

68
)    (72) 

 

The factor 10
68

 is valid for M2 values given in 10
-8

 T
2
 and r in Å and: 

 

   
 


N

i

N

ik ikI rNr 1
66

111
       (73) 

 

   
 


N

i

N

k ikS rNr 1 1
66

111
       (74) 

 

Comparison of equations (69) and (70) leads to: 

 

   CS = 
9

4
CI          (75) 
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Solid-state NMR spectroscopy:  The method of moments 
 

___________________________________________________________________________ 

 

The value CI of the nucleus X can be calculated by: 

 

  CI(X) = CI(
1
H) 

4

3

)1( II
21

0

2

0

)(

)(

H

X




      (76) 

 

with CI(
1
H) = 358.1 and the resonance frequencies 0(X) and 0(

1
H) of the nuclei X 

and 
1
H, respectively. 

 

In a field with a 
1
H resonance frequency of 500 MHz, e.g., the 

13
C and the 

27
Al 

resonance frequencies are 125.6 MHz and 130.3 MHz, respectively, and CI and CS 

follow to: 

 

   CI(
13

C) = 358.1
2

500

6.125

4

3
4

3









 = 22.6    (77) 

and  

   CS(
13

C) = 
9

4
22.6 = 10.0      (78) 

 

or  

   CI(
27

Al) = 358.1
2

500

3.130

4

3
4

35









= 283.7    (79) 

 

and 

   CS(
27

Al) = 
9

4
283.7 = 126.1     (80) 

 

In the local structure of bridging OH groups (SiOHAl) in zeolites, the hydroxyl 

proton is involved in a heteronuclear dipolar interaction with one framework 

aluminium atom. This interaction is the dominating line broadening mechanism in 

the 
1
H NMR spectrum. 

 

By an evaluation of the 
1
H NMR line width, a second moment of M2 = 0.710

-8
 T

2
 

was determined.The second term of equation (70) yields an H-Al distance of 2.377 

Å. 
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Solid-state NMR spectroscopy:  Experimental techniques /  

       Excitation 
___________________________________________________________________________ 

 

The radio frequency (rf) pulses applied to excite a spin system is described by: 

 

    Hrf = 
xIt)cos(2 1       (81) 

 

with the nutation frequency 1 = B1. This nutation frequency has values of 

1400 kHz.  

 

Generally, the pulse length tp is given by:  

 

    tp = 
1


 = 

1B


      (82a) 

 

with the nutation angle  = /2,  … . The frequency range , which is excited 

by a pulse with the length tp, amounts to: 

 

 

      1/(tp)       (82b) 

 

 

Aluminum nuclei with a Cqcc value of 10 MHz, e.g., cause a 
27

Al NMR signal with  

a spectral range  of ca. 3 MHz (see eq. (36) and Fig. 4, right). The full excitation 

of this spectral range requires a pulse with a length of tp  0.1 µs!    

 

In the case of a single /2 pulse excitation, the repetition time trep should be ca. 5  

T1. Otherwise, saturation of the magnetization occurs.   

          

Shorter repetition times require the application of the Ernst angle opt (cos opt =  

exp{-trep/T1}, which is optimised to decrease saturation effects.  

 

For a spin system with a T1 time of 5 s, the following optimised nutation angles as 

a function of the repetition time should be used: 

 

  

  repetition time  7.5 s  5.0 s  2.5 s 

    

  opt   77
o
  68

o
  53

o
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Solid-state NMR spectroscopy:  Experimental techniques /  

       Excitation 
___________________________________________________________________________ 

 

For the strongest solid-state interaction causing broadest frequency distribution 

functions, the quadrupolar interaction, following cases have to be distinguished: 

 

    |Hrf| > |HQ|   (*) 

and  

    |Hrf| < |HQ|   (**) 

 

 

A so-called hard pulse (short duration, high power) can perform a nonselective 

excitation of the whole quadrupolar spectrum if the rf field strength meets (*), 

while a soft pulse (long duration, low power) cause a selective excitation of single 

transitions (m = I, I+1, …, I1) such as the central transition (m = 1/2). 

 

 

In the case of a nonselective excitation of all transitions, the intensity of the FID 

)0(1,

venonselecti

mmG  after a pulse with the rf field strength 1 and the pulse duration tp is 

[Freude2]: 
 

)sin(
)12)(1(2

)1()1(3
)0( 11, p

venonselecti

mm t
III

mmII
G 






   (83) 

 

Equation (83) gives the relative intensities of all transitions (compare eq. (39)). 

 

 

The selective excitation leads to an FID of: 

 

  
 

  ))1()1(sin(
)12)(1(2

)1()1(3
)0( 11, p

selective

mm tmmII
III

mmII
G 




  (84) 

 

 

Comparison of equations (83) and (84) reveals that the maximum intensity is 

reduced by  )1()1(  mmII , but the effective nutation frequency eff

1 is 

enhanced by the same value, i.e., for the central transition (m = -1/2) by: 
 

    11 )
2

1
(   Ieff        (85) 

 

For selective excitation, therefore, the nonselective /2 pulse devided by (I + 1/2) 

is the optimum pulse. 
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Solid-state NMR spectroscopy:  Experimental techniques / CP 
 

___________________________________________________________________________ 

 

Investigation of nuclei with small gyromagnetic ratio and low concentration can be 

improved by magnetization transfer from the abundant to the rare spins using cross 

polarization (CP). 

 

In the high-temperature approximation, the population differences NI and NS of 

spins I and S are in the ratio: 

 

    
S

I

S

I

N

N









       (86) 

 

Therefore, it is interesting to transfer magnetization from the 
1
H spins I to the rare 

spins S with a lower gyromagnetic ratio.  

 

In the cross polarization experiment, the abundant and rare spins are locked in a 

radio frequency field applying the pulse group shown in Figure 5. 

 

                                        

I

decoupling

free induction 
               decayS

t

t

/2)x

(contact
 pulse)y

   
Figure 5 

Pulse sequence of the cross polarization experiment.  

 

During the contact pulse, the spins I toggled by the (/2)x pulse to y and the spins I 

and S are locked along the B1 fields (see Figure 6, left). If 1,S = 1,I (Hartmann-

Hahn condition), magnetization transfer occurs (see Figure 6, right). 

 

       

z, B0

x

y

1,S

1,I
S

I 

      

Erf

spins I spins S

I 1,IB S 1,SB=
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Figure 6 

Spin-locking during irradiation of the contact pulse (left) and energy splitting in 

the rf field (right) fitting the Hartmann-Hahn condition. 

Solid-state NMR spectroscopy:  Experimental techniques / CP 
 

___________________________________________________________________________ 

 

During the spin-locking in the rf fields, relaxation occurs with the characteristic 

time T1, which is the T1 time in the rotating frame.  

 

The time dependence of the spin S magnetization MS(t) is plotted in Figure 7 

[Michel1]. 

 

                     

M tS( )

t
tm

exp{- / }t T1 ,I

1-exp{- / }t TIS

   
Figure 7 

Time dependence of the spin S magnetization Ms(t). 

 

The decay of Ms(t) in Figure 7 depends on the relaxation T1,I of the spins I (dotted 

line) and the cross-polarization rate TIS
-1

 given by: 

 

   

2/1

,2

,2
5

2

2

31















II

IS

IS M
M

T


      (87) 

 

with the second moment of heteronuclear (M2,IS) and homonuclear (M2,II) dipolar 

interaction (see eqs. (67) and (68)). 

 

The parameter  in Figure 7 corresponds to: 

 

    = 1 + 
I

IS

S

IS

T

T

T

T

,1,1 

        (88) 

 

The maximum spin S magnetization is reached after the time tm: 
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   tm = 















IS

I

ISI

IIS

T

T

TT

TT ,1

,1

,1
ln





       (89) 

 

 



Michael Hunger, University of Stuttgart, Institute of Chemical Technology 

https://michael-hunger.de 

 

24 

Solid-state NMR spectroscopy:  Experimental techniques / MAS 
 

___________________________________________________________________________ 

 

The technique of magic angle spinning (MAS) consists of a mechanical rotation of 

the sample with a frequency rot of up to 40 kHz  

 

For two spins I and S connected by a vector rIS, the angle  between B0 and rIS is 

given by (see Figure 8): 

 

  cos  = cos cos  + sin sin cosrott     (90) 

 

                                          

rot

B0

I

S





rIS

   
Figure 8 

Under fast sample rotation, the angle  between B0 and rIS is a function of time. 

 

With the mean values over a period 0cos trot  and 2/1cos2 trot  follows: 

 

  )1cos3)(1cos3(
2

1
1cos3 222        (91) 

 

This term cancels, if  = 54
o
 44’, the so-called magic angle. 

 

Effect of magic angle spinning on solid-state interactions exhibiting the geometric 

term (3 cos
2 
- 1): 

 

1) A homogeneous broadening is effectively reduced, if rot is larger than the 

line width without rotation. In the other case, for homonuclear dipolar interaction, 

the flip-flop term B hinders an averaging by MAS. 

 

2) For inhomogeneous broadening (anisotropic shielding interaction, 

heteronuclear dipolar interaction, quadrupolar interaction) and a rotation rate less 

than the anisotropy, the spectrum is reduced to its isotropic value and spinning 

sidebands occur at  = 0  n  rot with n = 1, 2 …. There are several methods to 

suppress spinning sidebands by irradiating pulse sequences (e.g. TOSS [Dixon1]). 
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Solid-state NMR spectroscopy:  Experimental techniques / MAS 
 

___________________________________________________________________________ 

 

For a thermal mobility of the nuclei under study with a correlation time c < 1/rot, 

the width of the MAS central line, 1/2
MAS

, is given by [Andrew1]: 

 

  1/2
MAS

 = 











 222
)(41)(1

2

6

1

crot

c

crot

cM









   (92) 

 

with the static second moment M2 (see Figure 9). 

 

                                  

li
n

e
 w

i d
t h

 


1
/2

1/M21/rot
c

MAS

without MAS
1/2, equ. (60)

6M /(15 )2 rot

   
Figure 9 

Line width 1/2 as a function of the correlation time c [Andrew1]. 

 

The influence of thermal motion on the decay G
MAS

(t) under MAS is [Pfeifer1]:  

 

   G
MAS

(t) = exp{-(M2,IS/3)[2J(rot, t)+J(2rot, t)]}  (93) 

with 

 J(rot, t) ) = ))cos(1(
))(1(

)1)((

)(1

/

22

22

2
te

t
rot

t

crot

crotc

crot

c c 






 








 

   )sin(
))(1(

2 /

22

3

te rot

t

crot

crot c 


 


      (94) 

                  
Figure 10 
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Calculated 
1
H MAS NMR spectra (rot = 3 kHz) of bridging OH groups in zeolite 

H-Y (M2,IS = 0.7  10
-8

 T
2
) characterized by different thermal mobilities (c). 
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Solid-state NMR spectroscopy:  Experimental techniques / MAS 
 

___________________________________________________________________________ 

 

The effect of MAS on quadrupolar broadening of the central transition is given by 

[Freude1]: 

   M2
MAS

 = 

2
2

0

2

3
1

4

3
)1(

304

1







































II

Q     (95) 

 

or   M2
MAS

 = 2

4

1
qs        (96) 

 

Hence, with equation (64) can be shown that the narrowing achieved by MAS is: 

 

   6.3
7

92

2

2 
MAS

static

M

M
      (97) 

 

This narrowing of the central transition is combined by a change in the line shape 

which can be described by equation (44), but modified terms A, B and C 

[Freude1]: 

  A =  2cos
48

7
2cos

8

7

16

21 22      (98) 

 

  B =  2cos
24

7
2cos

12

1

8

9 222       (99) 

 

  C =  2cos
48

7
2cos

8

1

16

5 22      (100) 

 

with the Euler angle  and the asymmetry parameter .  
 

 

 

 

 

 

 

 

 

 

 

Figure 11 

Line shapes of a central transition with  = 0.2, without (top) and with MAS 

(middle) and with DOR or MQMAS NMR (bottom). 
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Solid-state NMR spectroscopy:  Experimental techniques / 

Multiple-pulse sequences 
___________________________________________________________________________ 

 

In the case of strong homonuclear dipolar interactions and if anisotropy of 

chemical shift should be studied, averaging by multiple-pulse sequences is 

performed. 

 

By toggling the magnetization with 90
o
 pulses along x (100), y (010) and z (001) 

for equal times, it is directed on average along (1,1,1) with the magic angle to the z 

(001) axis (see Figure 12). 

 

                                            

001

100

010

  
Figure 12 

The angle between the diagonal (111) and each side of a cube is equal to the magic 

angle. 

 

A pulse sequence to toggle the magnetization in an appropriate manner is shown in 

Figure 13. 

 

                   
0

t

aqu. aqu.cyclecycle
 

Figure 13 

Multiple-pulse sequence WAHUHA4 [Fraiss1]. 

 

The whole sequence consists of a repetition of n elementary cycles with the cycle 

time tc. At time zero, the magnetization lies along the z direction. The effect of the 

pulse sequence is to toggle the magnetization along the three axis. In the middle of 

the large window (aqu.) per cycle, a date point is sampled.  
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In the most cases, multiple-pulse sequences cause a scaling of the chemical shift 

(1/ 3  for WAHUHA4) [Grimmer1]. 

Solid-state NMR spectroscopy:  Experimental techniques / 

Multiple-pulse sequences 
___________________________________________________________________________ 

 

Using the pulse operators Px,y and P-x,-y: 

 

   Px,y = exp 







 yxI

i
,

2




      (101) 

and 

   P-x,-y = exp 







yxI

i
,

2




      (102) 

 

the pulse sequence shown in Figure 13 can be described by: 

 

  (, Px, 2, P-x, , Py, 2, P-y, )n      (103) 

 

According to the concept of the time averaged Hamiltonian, the behavior of the 

system at times ntc with the number n of cycles and the cycle time tc is given by:  

 

   
ct

c

tHdt
t

H
0

'' )(
1

       (104) 

which leads to: 

    
zyx HHHH 

3

1
      (105) 

 

The Hamiltonian of homonuclear dipolar interaction (see eq. (20)) can be written: 

 

 Hz = 





4

02ki

ki




 











 

2

cos311
2

3

ik

ikr
(3IziIzkIiIk) = ik

ki

A


(3IziIzkIiIk) (106) 

 

With equations (101) and (102) follows: 

 

 Hx = exp 







 yI

i

2




 Hz exp 








yI

i

2




 = ik

ki

A


(3IxiIxkIiIk)   (107) 

and 

 Hy = exp 







 xI

i

2




 Hz exp 








xI

i

2




 = ik

ki

A


(3IyiIykIiIk)   (108) 

 

Using equations (106) to (108), the averaged Hamiltonian in equation (105) gives: 
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 H  = 
3

1 ik

ki

A


[(3IxiIxkIiIk) + (3IyiIykIiIk) + (3IziIzkIiIk)] = 0  (109) 
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Solid-state NMR spectroscopy:  Experimental techniques / DOR 
 

___________________________________________________________________________ 

 

In contrast to the first-order perturbation of quadrupolar interaction, which has an 

anisotropic part depending on the geometric term (3cos
2
-1) only (see eq. (38)), 

the second-order perturbation term describing the line shape of the central 

transition exhibits a more complicate anisotropic part (see eq. (44)). 

 

Using a representation where p denotes the quantum level p, symmetric coherences 

with the notation p/2  p/2 instead of m   m and for the case of fast sample 

rotation around an axis in the magic angle, the transition p/2,-p/2 is given by 

[Amour1]: 

 

  p/2,-p/2 = iso,p + aniso,p       (110) 

 

    = 
























0

2

2

0

22

129604

3
)1(

90

)3(







 QQ p
pII

p
   

       4cos702cos360)18( )4(

0,4

2)4(

0,2

)4(

0,0

2 ddd   

      








 )3cos30cos35()
28

9
(1017)1(36 242 pII  (111) 

 

The Euler angles  and  describe the rotor axis with respect to the principal axis 

system. dn,0
(4)

 are the reduced Wigner matrices [Rose1]. 

 

The anisotropic part in equation (110) disappears if the term with the functions of 

 in the last bracket of equation (111) is zero, which requires an additional rotation 

around an axis in an angle of 30.56 or 70.12
o
. 

 

This average is reached by double-oriented rotation (DOR) using a second inner 

rotor inside a large outer rotor (see Figure 14). 

                                  

outer

B0



inner

   
Figure 14 

Arrangement of the inner and outer rotor in a DOR NMR probe [Wu1]. 
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Solid-state NMR spectroscopy:  Experimental techniques / MQMAS 
 

___________________________________________________________________________ 

 

The multiple-quantum MAS (MQMAS) technique greatly enhances the resolution 

of spectra due to nuclei with a half-integer spin I > 1/2. Basically, this approach 

combines an excitation of non-observable multiple-quantum transitions {+m, -m} 

with the experimentally observed single-quantum transition {+1/2, -1/2} 

[Frydman1]. The phase development )(t  of a single or multiple-quantum 

coherence is: 

 

   
t

t





2

)(
 p + p/2,-p/2      (112) 

 

The first term  includes the chemical shift and the resonance offset: 

 

    = iso0 – offset       (113) 

 

The second term of equation (112) corresponds to anisotropic term in equation 

(111). The multiple-quantum transitions are excited by a single high-power radio 

frequency pulse (Fig. 15). Subsequently, the multiple-quantum coherence (p = +m, 

-m) is allowed to evolve in t1. After the evolution period t1, a second pulse is 

applied, which converts the multiple-quantum coherences into the coherence p =  

-1. The signal is an echo, which is formed in the time period t2: 

  

                                  t2 = QA t1                                                                                                       (114) 

 

where QA is a term denoting a value of the quadrupolar anisotropy, and causing a 

refocusing of the anisotopic part. The two-dimensional Fourier transformation of 

the echo-decays t2 obtained for different pulse delays t1 leads to a two-dimensional 

MQMAS spectrum with featured signals lying along the quadrupolar anisotropy 

axis 2. The isotropic spectrum occurs along the 1-axis.   

   

                      

p

t1

t1 t2

z-filter
pulse

a)

b)

excitation
   pulse

excitation
   pulse

conversion
    pulse

conversion
    pulse

t2

p

echo

echo

 3
 2
 1
 0
-1
-2
-3

 3
 2

 1
 0

-1
-2

-3    
Figure 15 
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Pulse sequence and coherence transfer pathway of an MQ experiment [Freude1]. 

Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Structures of zeolites: 

                      
 

Dependence of the 
29

Si chemical shifts on the neighbouring T atoms: 

          
 

Framework nSi/nAl ratio: 

 

         nSi/nAl =  
 


4

0

4

0

)()( 25.0/
n n

nAlSinAlSi InI  
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Solid-state NMR spectroscopy:  Applications  
___________________________________________________________________________ 

 
29

Si MAS NMR spectra of different aluminium-containing zeolites (top) and of 

their highly siliceous (bottom) forms [Thom1]: 
            

                   
     

 

Table of 
29

Si chemical shifts of Si(nAl) units in some selected zeolites [Karg1]: 

 
zeolite nSi/nAl Site Si(4Al) Si(3Al) Si(2Al) Si(1Al) Si(0Al) 

Y 2.5   T -83.8 -89.2 -94.5 -100.0 -105.5 

    T     -107.8 

Omega 3.1   T1  -89.1 -93.7 -98.8 -103.4 

    T2 -89.1 -93.7 -98.8 -107.0 -112.0 

    T1     -106.0 

    T2     -114.4 

mordenite 5.0   T1 to    

  T4 

  -100.1 -105.7 -112.1 

    T1     -112.2 

    T4     -113.1 

    T2 + T3     -115.0 

ZSM-5 20   T1 to    

  T12 

   -106.0 -112.0 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Influence of the mean T-O-T angle  on the 
29

Si chemical shift [Engel1]: 

 

   29Si / ppm = 5.230 – 0.570      

  
 

  29Si / ppm = 223.9cos/(cos1) + 5n –7.2   (116)  

 

with the number n of aluminium atoms in the second coordination sphere. 

 

 

Experimental (top) and calculated (bottom) 
29

Si MAS NMR spectrum of siliceous 

zeolite ZSM-5 with 24 different T positions [Engel2]: 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Study of the connectivities of silicon atoms in zeolite ZSM-39 by sampling the J-

coupling (ca. 110 Hz) with the two-dimensional 
29

Si COSY MAS NMR 

experiment [Fyfe1]: 

 

   

    
 

a) pulse sequence (parameter FD is a fixed delay of 5 ms) 

b) zeolite structure with T positions 

c) 2D COSY MAS NMR spectrum (stacked plot) 

d) 2D COSY MAS NMR spectrum (contour plot) 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 
27

Al MAS NMR of crystalline aluminosilicates (zeolite H-Y) containing 

tetrahedrally (Al
IV

) and octohedrally (Al
VI

) coordinated aluminum [Rocha1]: 

 

       
 

CP raises the intensities of signals due to atoms interacting with water molecules 

(hexa-aquo complexes, extra-framework aluminum). 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 
1
H MAS NMR spectroscopy of hydroxyl groups in zeolite Y (SiOH: ca. 1.8 ppm, 

SiOHAl: 3.9 to 4.2 ppm, MeOH: -0.5 to 5.6 ppm, ) exchanged with different 

cations (a-c) and after dealumination (d) [Hung1]: 

                 
 

Scheme of a NOESY NMR experiment sampling spin diffusion during : 

 

                           

I:  H
1



induction 
            decay

          t                                            t1 2
t

 

 
 

Contour plots of 
1
H NOESY MAS NMR experiments performed with dehydrated 

silicoaluminophosphate SAPO-5 and zeolite HZSM-5 [Hung1]: 

 

                
 

Cross peaks indicate spin diffusion between defect SiOH groups at 1.5 to 1.8 ppm 

and bridging OH groups at 3.8 to 4.3 ppm. 

SiOHAl: 3.8 – 4.3 

ppm 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Equipment for the preparation of solid catalysts for in situ MAS NMR 

investigations of surface sites and adsorbate complexes [Munson1, Zhang1]: 

 

              
 

 

 

Scheme of a Laser heating system in a high-temperature MAS NMR probe 

[Mild1]: 
 

        
 

 

Temperatures up to 923 K at rotation frequencies of up to 3.5 kHz can be reached. 
 

Because of Curie’s law: 

                                               
Tk

BIIN
M

B3

)1( 0

22

0





            (117) 

 

the magnetization and decrease with increasing temperature T, which can be a 

limitation for NMR spectroscopy under in situ conditions. 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Studies of reactions catalyzed by surface sites of microporous solids such as 

nitration of toluene with nitric acid and acetic anhydride on zeolite H-Beta [Hao1]: 

 
 

                     

CH3

CH3

NO2

 +   2  CH COOH3

zeolite  

    
 
27

Al MAS NMR of octahedrally (Al
VI

) and tetrahedrally (Al
IV

) coordinated 

aluminium in zeolite H-Beta and 
15

N MAS NMR of reactants [Hao1]: 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Continuation of nitration of toluene with nitric acid and acetic anhydride on zeolite 

H-Beta [Hao1]: 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Double resonance pulse sequences for the investigation of bond geometries 

[Smith]: 

 

 

SEDOR (Spin Echo DOuble Resonance)  

 

                       0

t1



echo 


2 







I:

S:
t
 

 

 

The experiment is performed without application of MAS. During the first pulse 

delay of a /2---  echo sequence applied to the spins I, a single -pulse is 

applied to the spins S. This -pulse inverts the sign of the dipolar coupling, which 

perturbs the dipolar refocusing process and diminishes the echo intensity for 

coupled spin pairs I-S. 

 

SEDOR fraction: 

 

  Sf(t1) = 
0

10 )(

S

tSS 
        (118) 

with 

  S(t1) =   




0

2

1 sin)1cos3(cos dDt      (119) 

 

Here, D = IS /rIS
3
, rIS defines the distance between the coupled spins I and S, and 

 is the angle between the internuclear vector rIS and the external magnetic field 

B0. S0 is the echo intensity without application of the -pulse to the spin S 

ensemble. As an example, SEDOR was used to determine the Al-P distance in the 

aluminophosphate AlPO4-5. A fitting of the SEDOR curve led to D = 405  10 Hz 

corresponding to rAl,P = 315  3 pm [Eck2]. 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

 
REDOR (Rotational Echo DOuble Resonance) 

 

 

                        


2 

echo 
I:

S:

Nc0 2 4  
 
 

Is in principle a SEDOR experiment in combination with MAS. A rotor 

synchronised echo sequence is applied to the spins I, which are detected after a 

time 2 equalling an even number Nc of rotation periods. For decoupling the 

dipolar interaction between the spins I and S, -pulses are applied to the spin S 

ensemble at every half rotation period Tr. The dipolar coupling is obtained by 

measuring the REDOR fraction, which describes the loss of the echo intensity as a 

function of the number of rotor periods: 

 

       

 
0

0 )(

S

TNSS rc  = 
)1(

1
2 SS

(NcTr)
2 
M2,IS     (120) 

 

 

M2,IS is the second moment of the heteronuclear dipolar interaction given in 

Equation (68). This term contains rIS, which is the distance between the coupled 

spins I and S. Again, S0 is the echo intensity obtained without application of -

pulses to the spin S ensemble. 

 As an example, zeolite H-Beta dealuminated by ammonium 

hexafluorosilicate was investigated with REDOR [Kao1]. The REDOR fraction of 

the signal of extra-framework aluminium atoms at 0 ppm gave a dipolar coupling 

constant corresponding to an Al-F distance of 180 to 220 pm. This finding 

indicates that the aluminum atoms occurring in extra-framework clusters of the 

dealuminated zeolite H-Beta under study are directly bound to fluorine atoms. 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

TRAPDOR (TRAnsfer of Population in DOuble Resonance) 

 

                     


2 

echo 

adiabatic
   pulse

adiabatic
   pulse

I:

S:

Nc0 2 4  
 
The TRAPDOR and REAPDOR experiments were designed specifically for the 

study of spins I interacting with quadrupolar nuclei having the spin S > 1/2. In the 

TRAPDOR experiment, a rotor synchronized echo sequence is applied to the spins 

I. During the pulse and echo delay, the quadrupolar nuclei with spin S are 

continuously irradiated, which leads in combination with MAS leads to 

rotationally induced level transitions. Since these level transitions are difficult to 

calculate, TRAPDOR is a qualitative experiment only.  

 

REAPDOR (Rotational Echo Adiabatic Passage Double Resonance) 

 

                    


2

echo 
I:

S:

T nr/

Nc0 2 4  
 

In contrast to TRAPDOR, a train of rotor synchronized -pulses is applied on the 

spins I at every half rotation period Tr. In the first half of the evolution period, the 

spins I will dephase as a result of the chemical shift anisotropy and the 

heteronuclear dipolar coupling. In the second half of the evolution period, the 

magnetization is refocused and an echo is formed. In the center of the evolution 

period, a so-called adiabatic passage pulse is applied to the spins S. (duration of 

Tr/3 to Tr/2). The dipolar dephasing of the spins I, which are coupled with spins S, 

can not be refocused in the echo and an decrease of the echo intensity occurs. The 

quantitative evaluation of the REAPDOR fraction is performed similar to the 

REDOR fraction. REAPDOR has been employed to study the local structure of 

silicon atoms in the framework of the aluminum substituted molecular sieve ETS-

10 [Gana1]. 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 
27

Al-
31

P correlation MAS NMR spectrum of the aluminophosphate VPI-5 [Eck1]: 

 

               
 

 

a) double resonance pulse experiment consisting of REDOR (rotational-echo 

double resonance) sequences  

b) 2D spectrum (contour plot) 

 

The experiment indicates a coupling of all phosphorus atoms with tetrahedrally 

coordinated framework aluminium. 
 



Michael Hunger, University of Stuttgart, Institute of Chemical Technology 

https://michael-hunger.de 

 

47 

Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Scheme of a DOR (double oriented rotation) rotor: 

                     
Suppression of sidebands caused by the outer DOR rotor (

23
Na DOR NMR of 

Na2SO4, rot,outer = 650 Hz): 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Comparison 
23

Na static, MAS, and DOR NMR spectroscopy of sodium 

cyclotriphosphate Na3P3O9: 

 

       
 

 

Results of simulation: 

 

parameter Na1 Na2 

QCC 2.2 MHz 1.6 MHz 

 0.7 0.55 

iso 14.8 ppm 5.6 ppm 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

Local structure of sodium cations in dehydrated zeolite Na-Y: 

               
 
23

Na MAS NMR (left) and 2D 
23

Na nutation MAS NMR spectrum of dehydrated 

zeolite Na-Y [Hung2]: 

 

     
 

Scheme of the 2D nutation NMR experiment: 

 

                          

S:  Na
23

pulse

induction 
            decay

       t          t  +  t         t1 1 i 2n
t
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 
23

Na DOR NMR spectra of dehydrated zeolite Na-Y in different magnetic fields 

(left and right) and recorded with different sample spinning frequencies (top to 

bottom) [Hung2]: 

 

               

(121) 

(122) 

(123) 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 

A suitable tool for the discussion of the value of quadrupolar coupling constants of 
27

Al nuclei in AlO4 tetrahedra is the shear strain parameter  : 

 

      =



6

1

0tan(
i

i              (124)  

 

                                       

i

i i

i

 
 

 

Schematic drawing (top) of the structure of the aluminophosphate VPI-5 and 

correlation of the quadrupolar coupling constant Cq of 
27

Al nuclei as a function of 

the shear strain parameter  of AlO4 tetrahedra in aluminate sodalites (, ), 

feldspars (), and VPI-5() [Karg1]: 
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Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 

 
17

O 3QMAS NMR spectra of zeolite Na-ZSM-5 after the 2D Fourier 

transformation (left) and after the shearing transformation (right) [Freude1]: 

 

 

     
 

The spectra consist of signals due to SiOSi (80%, CQ = 5.3 MHz) and SiOAl (20%, 

CQ = 3.5 MHz) bridges. 

 

Before shearing, the chemical shifts along the two dimensions are given by 

[Amour2]: 
 

 

  
    

2

0

222

Q

isoqsiso1
360

3143






pII 
         (125) 

and 

  
    

2

0

22

Q

isoiso2
360

3143









II
qs .    (126) 

 

with the isotropic chemical shift iso and the second-order quadrupolar shift qs. 

 

 

The shearing modifies shift values along the 1 axis according to [Amour2]: 
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