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1.  Introduction to Nuclear Spin Interactions in Solids 

1.1 Survey on Nuclear Spin Interactions 

 

-   positions and shapes of solid-state NMR (SSNMR) signals are determined by 

the following nuclear spin interactions: 

 

Htotal = H0 + HQ + HK + HDI + HCSA + HJ   (1) 

 

Hamiltonian Description Frequency / 

signal broadening 

H0 Zeeman interaction of the magnetic 

nuclear dipole moment µi with the 

magnetic B0 field 

 10
9
 s

-1
 

HQ interaction of the electric nuclear 

quadrupole moment of spin I > ½ nuclei 

with electric field gradients at the 

position of the nuclei 

 10
7
 s

-1
 

HK Knight shift due to the interaction of 

resonating nuclei with unpaired  

electrons in their neighbourhood 

 10
5
 s

-1
 

HDI direct interaction of the magnetic dipole 

moment of the resonating nucleus with 

magnetic dipole moments of 

neighbouring nuclei 

 5  10
4
 s

-1
 

HCSA anisotropic chemical shielding   due to 

the  attenuation of the local B0 field by 

the electron shell 

 5  10
3
 s

-1
 

HJ J-coupling, scalar interaction or indirect 

nuclear spin-spin interaction caused by 

bonding electrons 

 

 5  10
2
 s

-1
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1.2 Zeeman Interaction 

 

-   Hamiltonian H0 of the Zeeman interaction of nuclei with spin I and the 

gyromagnetic ratio I in an external magnetic B0 field: 

   H0 = IIB0       (2) 

-   splitting of the nuclear energy levels according to their magnetic quantum 

numbers m (bottom, left) 

-   the transition frequency between these energy level corresponds to the  

    Larmor frequency 0: 

0 = 




2

I  B0        (3) 

- in the classical picture, the Larmor frequency is the spinning frequency of the  

    magnetic dipole moments µi (bzw. µ) on a cone-surface, which is directed 

along the B0 field (bottom, right) 

                                    

 

1.2   Quadrupolar Interaction 

 

- nuclei with a spin I > ½ are characterized by an elliptic charge distribution 
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- this charge distribution causes a nuclear quadrupole moment eQ  

(proportional to the quadrupolar anisotropy QA in the top Figure) 

 

Nucleus 
2
H 

23
Na 

27
Al 

41
Ca 

241
Pu

 

Spin I 1 3/2 5/2 7/2 5/2 

eQ e  0.29 e  10.40 e  14.66 -e  6.70 e  560 

 

-  for spins I = 3/2, 5/2, 7/2 etc., in addition to the central transition (-1/2   

   +1/2) also satellite transitions (z.B. -3/2  -1/2, +1/2  +3/2 etc.) exist 

                     

m

3/2

1/2

+1/2

+3/2

  Zeeman                Zeeman + quadrupolar 
interaction                       interaction

central
transition

satellite
transition

satellite
transition

  = (1/2) (3cos -1)Q

2



 0 +  2

 0 -  2

0  

 
 

-  the signal of the central transition occurs at the centre of gravity near 0 

-  satellite signals are shifted by 2  relative to the central transition   

-  the value of  depends on the quadrupole frequency Q = 2Q  as well as the 

angle   between the z direction of the electric field gradient Vzz = eq at the 

position of the nucleus (parameter of local structure) and the B0 direction 

         




  

                 

Q

Q
Q      

  single crystal           powder sample 
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- relative signal intensities A of the central transitions (CT) and the satellite 

transitions (ST): 

   A(CT,ST)  = 
)12)(1(

)1()1(

2

3





III

mmII
    (4)

      

      transitions          ST     ST     ST     ST     CT     ST      ST     ST     ST            

  ___________________________________________________________ 

 I = 1     1/2  1/2  

 

 I = 3/2   3/10  4/10  3/10 

 

 I = 2   2/10  3/10  3/10  2/10 

 

 I = 5/2   5/35  8/35  9/35  8/35  5/35 

                           (nuclei with spin I = 1, 2, 3 etc. have no central transition) 

 

- Hamiltonian HQ of the quadrupolar interaction: 

  HQ = 
)12(4

2

II

qQe
[3Iz

2
I(I+1)] 
















2cossin

22

1cos3 2
2

Q   (5) 

with asymmetry parameter Q and components of the electric field gradient  

V (Vzz ≥ Vyy ≥ Vxx): 

zz

yyxx

Q
V

VV 
        (6) 

and the Euler angles   and   between the principle axes of the electric field 

gradient tensor and the laboratory frame 

- the quadrupole coupling constant Cq corresponds to the strength of the 

quadrupolar interaction (proportional to the product of eQ and eq = Vzz): 

   Cq = 
h

qQe2

        (7) 

- relationship between Cq and the quadrupole frequency Q = 2Q: 

   Q = Q / 2 = 
hII

qQe

)12(2

3 2


= 

)12(2

3

II

Cq
    (8) 
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- frequency distribution function (signal shape) of the central transitions (1/2 

 +1/2) of quadrupole nuclei [Freude1]: 

  1/2 =  









4

3
)1(

6 0

2

II
Q




(Acos

4cos
2C  (9) 

     with 

  A =  2cos
8

3
2cos

4

9

8

27 22      (10) 

  B =  2cos
4

3
2cos2

2

1

4

15 222       (11) 

  C =  2cos
8

3
2cos

4

1

3

1

8

3 222       (12) 

 

- signal shapes of central transitions for different asymmetry parameters Q 

(here ) in units of (- 0) / X : 

            X = 
0

2

4

3
)1(

9

1



Q
II 








                                (13) 

                    (- 0) / X 

                static measurement               MAS 

                 (for MAS, i.e. magic angle sample spinning, see Section 2.3) 
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- the centres of gravity of the central transition signals and of the satellite 

transition signals are shifted by the frequency difference   [Freude1]: 

    = 









3
19

30

2

0

2




 Q       (14) 

- furthermore, the centres of gravity of the central transition signals show a 

field dependent (B0 field) shift QS (quadrupolar shift): 

   QS  )
3

1
1(

4

3
)1(

30

1 2

0

2














II

Q     (15) 

 

Four methods for the determination of the quadrupolar interaction 

1) In the case of weak quadrupolar interactions, an evaluation of the distances 

of the singularities of the satellite transition signals can be performed (page 

4, bottom). 

2) Alternatively, the difference  of the centres of gravity of the satellite and 

central transition signals can be measured and evaluated (Equ. (14)).  

3) In the case of strong quadrupolar interactions, a computer fit of the signal 

shape of the central transition can be performed (page 6, bottom). 

4) If the signal has no well-defined shape, the field-dependent quadrupolar 

shift QS of the central transition signal measured in different magnetic B0 

fields can be evaluated (Equ. (15)). 

 

Benefit of the obtained spectroscopic data 

- the quadrupole frequency Q and asymmetry parameter Q give insight into 

the charge distribution and symmetry (electric field gradient) in the local 

structure of resonating quadrupolar nuclei (see also Section 3.4) 

- allow to distinguish atoms located at different crystallographic positions 

and/or in amorphous phases 
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1.4 Knight Shift 

 

- resonance shift (Knight shift) of the NMR signals of nuclei with unpaired 

electrons in their neighbourhood 

- is also called Fermi contact interaction of these nuclei with paramagnetic 

centres  

- Knight shift  K (in ppm) or  (in frequency units) [Fraiss1]: 

   K = 
0


 = 

ne

Pa




       (16) 

with the Pauli susceptibility of the unpaired electrons P  and the 

gyromagnetic ratios of electrons e and the resonating nucleus n 

- parameter a depends on the strength of the hyperfine interaction of the 

resonating nucleus and the unpaired electrons 

- the Knight shift Hamiltonian HK of nuclei with spin I is:  

    HK = n IB0       (17) 

- the Knight shift K is often stronger than the effect of the shielding   or 

chemical shift and has mostly a positive sign: 

     = 0(1 -  + K)       (18) 

- therefore, a large positive resonance shift can be a hint at the presence of 

metallic clusters with unpaired electrons in the neighbourhood of the 

resonating nuclei 

 

Experimental evidence for Knight shift 

- verification of the temperature dependence of K via the Korringa equation: 

   K
2
 = 

TT
S

k n

e

B 1

2

1

4 

















       (19) 

with the spin lattice relaxation time T1, temperature T and the scaling factor S  
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Benefit of the obtained spectroscopic data 

- proof of unpaired electrons in the neighbourhood of resonating nuclei and 

their localization (see Attachment 1) 

 

1.5    Dipole-Dipole Interaction 

 

- Interaction of the resonating nucleus I with the magnetic dipole moments of 

neighbouring nuclei (nuclei S) 

- the dipole moments of neighbouring nuclei cause weak magnetic fields, 

which overlap the external B0 field (see bottom)  

                                   

- dipole-dipole interactions depend on the nucleus-nucleus distance rIS and the 

angle IS between the nucleus-nucleus vector and the direction the of B0 field 

- Hamiltonians of the homonuclear (same nuclei I with I) and the hetero-

nuclear (different nuclei I and S with I  S) dipole-dipole interaction HDI,II 

and HDI,IS, respectively: 

  HDI,II = 





4

02SI  











 

2

cos311
2

3

IS

ISr


(3IzSzIS)   (20) 

  HDI,IS = 





4

02SI  











 

2

cos311
2

3

IS

ISr


IzSz    (21) 

- alternative description:  

  HDI =  DI(A + B)       (22) 
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with  DI = (





4

0ki )/rik
3
       (23) 

   A = (
ik2cos31 )IziIzk      (24) 

   B = 
4

1


ik2cos31 I+iIk + IiIk]    (25) 

Term A: distribution of the Larmor frequency due to different magnetic 

fields at the positions of the nuclei 

Term B: flip-flop term due to spontaneous polarization transfer (spin 

diffusion, T2 relaxation) between neighbouring spins 

- spectra of dipolarly interacting spin pairs with I = 1/2 are composed by two 

mirrored tensors since each neighbouring nucleus S of the resonating nucleus 

I can have the two quantum states mS = 1/2  

       

3/2 (3cos -1) DI ik

2

          

3/2 DI

 
     single crystal             powder sample 

 

- in the case of polycrystalline samples, the values of the angle ik covert he 

range of 0
o
 to 


 and a powder spectrum occurs (see top, right), also called 

Pake doublet (see Attachment 2 and Section 3.2) 

 

Benefit of the obtained spectroscopic data 

- evaluation of the strength of the dipolar interactions allow the determination 

of nucleus-nucleus distances in crystalline as well as amorphous solids  
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1.6    Anisotropic Chemical Shielding and Shift 

 

- shielding of the external B0 field by the electron shell around the nucleus 

- shielding   is mostly anisotropic, i.e. is a tensor withzzyyxx 

                                

- Hamiltonian HCSA of the anisotropic chemical shielding: 

    HCSA =  IB0       (26) 

- frequency distribution function (signal shape) due to anisotropic chemical 

shielding: 

    = 0[(1 - iso ) - 













2cossin

22

1cos3 2
2

CSA ]  (27) 

with isotropic shielding iso (bzw. -iso): 

     iso  = 
3

1
(xx+yy+zz)     (28) 

anisotropy    = (zziso)      (29) 

asymmetry parameter CSA: 

     CSA






 )( xxyy
      

- in liquids, the rapid reorientation of the molecules causes an averaging of the  

anisotropic terms in Equ. (27): 

    = 0(1 - iso)        (31) 

- in polycrystalline solids cover the Euler angles   and   in Equ. (27) al 

values from 0
o
 to 


, which leads to the following spectra: 
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1 2 



  xx                          yy                                           zz           
1 2




xx  =yy
zz  

           general case, CSA≠                        axial symmetry, CSA 

- in the case of axial symmetry (CSA) is xx = yy  and often the following 

assignments of the principal axes values of the shielding tensor are used: 

    = zz        (32) 

    = xx = yy       (33) 

 

Benefit of the obtained spectroscopic data 

- the values of the anisotropy of the chemical shielding give insight into the 

nature and spatial arrangement of neighbouring atoms (see Attachment 3) 

- support the assignment of signals in SSNMR spectra (see Section 3.3) 

 

1.7     J-Coupling and Indirect Nuclear Spin-Spin Interaction  

 

- indirect nuclear spin-spin interaction (J-coupling) is a through-bond 

interaction arising from interactions with bond electrons  

- has a scalar value, which is independent of the strength of the magnetic B0 

field  

- Hamiltonian HJ with the scalar parameter Jij, which describes the through-

bond interaction between the nuclei i and j: 

HJ = IiJijSj        (34) 

- the J-coupling causes a signal splitting of up to 5  10
2
 s

-1
, which are, in the 

most cases,  covered by the much broader signals in SSNMR spectra 
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2. Experimental Techniques of Solid-State NMR Spectroscopy 

2.1  Saturation-Free Pulse Excitation of Large Spectral Ranges 

 

Correct pulse excitation 

- radio frequency pulses (RF) with magnetic field strength B1 causes a rotation 

of the magnetisation M with the nutation frequency  = B1 from the z 

direction (B0 direction) into the x-y plane (see bottom): 

                                       

- dependent on the B1 field strength (power of the pulse), /2 can reach up 

to500 kHz  

- the pulse length tp as a function of the nutation angle  = /2,  … is: 

    tp = 
1


 = 

1B


      (35) 

- the dependence of the excitation range  (spectral excitation range) on the 

pulse length tp is: 

      1/(tp)       (36) 

- spectral range, e.g., of 3 MHz (for 
27

Al-SSNMR) requires tp  0.1 µs! 

 

Preventing signal saturation  

- the repetition time of NMR experiments (trep) in the case of excitation with 

/2 pulses should be ca. 5  T1 (T1: spin-lattice relaxation time)  

- otherwise, saturation of the resonating spin system (not complete relaxation) 

and a loss of signal intensity would occur 
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- for very long T1 times, an excitation with shorter pulses, i.e. with optimised 

nutation angles (Ernst angle) opt can be performed (without saturation): 

    cos(opt) = exp{-trep/T1}     (37) 

- examples of Ernst angles opt for a nuclear spin system with a T1 time of 5 s 

and allowing shorter experiment repetition times trep: 

   trep  7.5 s  5.0 s  2.5 s 

   opt  77
o
  68

o
  53

o
  

 

2.2 Signal Enhancement by Cross Polarization (CP) 

 

- enhancement of signal intensities of nuclei S with low natural abundance 

and/or small gyromagnetic ratio (S: 
13

C, 
15

N, 
29

Si etc.)  

- usage of the high population difference NI at the nuclear energy levels of 

dipolarly coupled 
1
H nuclei I for an enhancement of NS via polarization 

transfer from I to S spins (CP: cross polarization): 

     
S

I

S

I

N

N









       (38) 

- prerequisite for this polarization transfer is an equalization of the energy 

levels of the dipolarly coupled spins I and S in the magnetic field components 

B1,I  and B1,S of long (1 to 6 ms) RF pulses (contact pulses) 

Erf

spins I spins S

I 1,IB S 1,SB=

 

 

I

decoupling

free induction 
               decayS

t

t

/2)x

(contact
 pulse)y

 
 

__________________________________ 
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- a/2 pulse produces I polarization and contact pulses allow the polarization 

transfer from spins I to neighbouring spins S if the Hartmann-Hahn condition 

is valid:   

 IB1,I = SB1,S       (39)  

- during the detection of the NMR signal of the spins S, a weak and long 

decouple pulse is irradiated at the spins I for averaging dipolar I-S interactions 

being responsible for signal broadening 

 

Parameters influencing the CP experiment 

- the polarization MS(t) of the spins S, produced by cross polarization depends 

on the duration t of the contact pulses [Michel1]: 

                     

M tS( )

t
tm

exp{- / }t T1 ,I

1-exp{- / }t TIS

   

- influencing parameters are the relaxation time T1,I of the spins I in the B1,I-

field (dashed curve), the cross polarization rate TIS: 

    

2/1

,2

,2
5

2

2

31















II

IS

IS M
M

T


      (40) 

the second moments M2,IS and M2,II of the dipolar I-S and I-I interaction 

(strength of these dipole-dipole interactions) and the parameter : 

     = 1 + 
I

IS

S

IS

T

T

T

T

,1,1 

        (41) 

- the optimum of Ms(t) is reached after the contact time tm: 

    tm = 















IS

I

ISI

IIS

T

T

TT

TT ,1

,1

,1
ln





       (42) 
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Hint 

- the optimum length of the contact pulses (1 bis 6 ms) is mostly experiment-

tally adjusted because of the numerous parameters influencing MS(t) 

- since parameters in Equ. (40) to (42) are often not known, a detailed 

quantitative evaluation and discussion of the signal intensities is not possible   

 

2.3 Rapid Sample Spinning Around an Axis in the Magic Angle (MAS) 

 

- separation and evaluation of broad and overlapping SSNMR signals require 

application of techniques leading to a narrowing of these signals 

- averaging of nuclear spin interactions rapid sample rotation (rot of up to 60 

kHz) around an axis in the angle of  = 54.7
o
 related to the direction of the B0 

field (MAS: magic angle spinning) 

- in this case, the term (3cos
2- 1) in most of the frequency distribution 

functions becomes zero  

            

 

- Hamiltonian, e.g., of the dipolar I-S interaction under application of MAS: 

   HDI, IS(t) = ½ ijħ
2
rij

-3 
(IiSj – 3IizSjz)   

{ (1/2) (3cos
2 – 1)   (3cos

2’ij – 1)  central line 

+ (3/2) sin
2sin

2 ’ij  cos(2rott + 0ij)  sidebands  (43) 

+ (3/2) sin
2sin

2 ’ij  cos
2
(2rott + 0ij) }  sidebands 
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-    therefore, MAS NMR spectra consist of the central line and spinning 

     sidebands in a distance of ±rot relative to the central line  

 

Rotation around an axis in the magic angle via multi-pulse sequences 

- in the case of strong homonuclear dipole-dipole interaction, application of 

MAS can have problems with the total narrowing of the SSNMR signals  

- helpful could be the irradiation a multi-pulse sequence (see bottom), e.g. in 

combination with MAS (CRAMPS: combined rotation and multi-pulse 

sequence)  

- using the pulse sequence WAHUHA, the magnetization is rotated via /2 

pulses from the z (001) direction into the x (100), y (010) and back into the z 

direction (001) 

0
t

aqu. aqu.cyclecycle
 

 

 

- this procedure corresponds to a rotation of the magnetization around an (111) 

axis, which is in the magic angle of 54.7
o
 to the z direction (001) [Grimmer 1] 

 

001

100

010

 
 

-  the pulse sequence consists of a repetition of n cycles, in which always one 

data point of the induction decay is recorded (aqu.)  
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Limitations of MAS in the case of thermal mobility 

- thermal mobility (described by correlation time c) of the resonating nuclei 

comprise the effect of MAS and leads to a residual width 1/2
MAS

  of the 

central line [Andrew1]: 

         1/2
MAS

 = 











 22,2
)(41)(1

2

6

1
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c

crot

c

ISM









   (44) 

 

li
n

e
 w

i d
t h

 


1
/2

1/M21/rot
c

MAS

without MAS
1/2, equ. (60)

6M /(15 )2 rot

 
 

 

- the influence of thermal mobility on the whole MAS NMR spectrum can be 

calculated via the following induction decay G
MAS

(t) and subsequent Fourier 

transformation into the frequency range [Pfeifer1]:  

   G
MAS

(t) = exp{-(M2,IS/3)[2J(rot, t)+J(2rot, t)]}  (45) 

mit   J(rot, t) ) = ))cos(1(
))(1(

)1)((

)(1

/

22

22

2
te

t
rot

t

crot

crotc

crot

c c 






 








 

   )sin(
))(1(

2 /

22

3

te rot

t

crot

crot c 


 


      (46) 

 

Example of signal broadening by thermal mobility 

- calculated 
1
H MAS NMR spectra of structural OH groups (Si(OH)Al) in 

zeolite H-Y (dipolar 
1
H-

27
Al interaction of M2,IS = 0.7  10

-8
 T

2
) for rot = 3 

kHz and c = 10 µs to 10 ms: 
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Hint 

- a suitable averaging of spin interactions in solids via MAS requires c >> 

1/rot  respectively  rot >> 1/c  

- therefore, helpful are high sample spinning frequencies and/or low 

temperature (large c) 

 

Limitations of MAS in the case of quadrupolar nuclei (S > ½)  

- the effect of MAS of quadrupolar nuclei is described by the second moment 

M2,Q
MAS

, which is proportional to the strength of the not averaged residual 

quadrupolar interactions [Freude1]: 

   M2,Q
MAS

 = 2

4

1
QS       (for QS, see Equ. (15))   (47) 

- in the case of a static measurement, i.e. without MAS, the second moment of 

the quadrupolar interaction is: 

M2,Q
statisch

 = 2

7

23
QS         (48) 

- via Equs. (47) and (48), the narrowing of central transition signals due to 

MAS (proportional to the square root of M2) can be calculated (compare with 

spectra on page 6, bottom): 

   
4

1

6.3

1

92

7

,2

,2


static

Q

MAS

Q

M

M
      (49) 
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2.4  Complete Averaging of Quadrupolar Interactions via Sample Around 

Two Axes (DOR) 

 

-   in the case of using the quantum level p with p/2  p/2 instead of m   m, 

the frequency distribution function of the central transition signal p/2,-p/2 

during application of MAS is [Freude1]: 

  p/2,-p/2 = p/2,-p/2
iso

  +  p/2,-p/2
aniso

   

 = 







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
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

0

2

2
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22
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3
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 QQ p
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   (50) 

       4cos702cos360)18( )4(

0,4

2)4(

0,2

)4(
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2  ddd  
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





 )3cos30cos35()
28

9
(1017)1(36 242 pII  

-  averaging of term p/2,-p/2
aniso

 if  = 30.56
o
 or 70.12

o
 (35cos

4- 30cos
2+ 3 = 

0), i.e., for sample spinning around a second axis in the angle  (DOR: double 

oriented rotation). 

outer

B0



inner

 

 

-  the small inner rotor containing the sample can rotate with rot ca. 6 to 8 kHz, 

while the large outer rotor reaches ca. 2 kHz 

 

Limitations of the DOR technique 

-  low signal/noise ratio due to low coil filling factor 

-  numerous spinning sidebands due to small rot of outer rotor 
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2.5  Complete Averaging of Quadrupolar Interactions due to Multiple-

Quantum NMR Experiments (MQ) 

 

-  combination of MAS with pulse sequences (echo sequence) for eliminating 

the residual signal width of the central transition of quadrupolar nuclei 

-  excitation of MQ transitions m1 (MQ: multiple-quantum) via a strong pulse, 

MQ evaluation time t1, and signal detection during the period t2 after 

conversion into single-quantum transitions m2 via weak pulses [Frydman 1] 

 

p

t1

t1 t2

z-filter
pulse

a)

b)

excitation
   pulse

excitation
   pulse

conversion
    pulse

conversion
    pulse

t2

p

echo

echo

 3
 2
 1
 0
-1
-2
-3

 3
 2

 1
 0

-1
-2

-3  

 

-  conditions for t1 und t2 in the pulse sequences show above [Frydman1]: 

    t1 C4(m1)  +  t2 C4(m2)  =  0     (51) 

  with C4(m1) = -42 und C4(m2) = 54 for nuclei with spin I = 3/2 and  

C4(m1) = -300 and C4(m2) = 228 for nuclei with spin I = 5/2 

 - recording of the echo signals G(t1,t2) at the time t2,echo: 

    t2,echo = [C4(m1)/C4(1/2)] t1       (52)        

-   twofold Fourier transformation (FT) of the echo signals G(t1,t2) as a function 

of the MQ evaluation time t1 gives a two-dimensional (2D) MQMAS NMR 

spectrum 
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- 2D MQMAS NMR spectra show quadrupolar influenced MAS NMR signals 

along the 2 axis (FT of t2) and fully isotropic signals (quadrupolar 

interactions completely averaged) along the 1 axis (FT of t1).  

 

Limitations of the MQMAS NMR technique 

-  MQ pulse sequences can be optimized for a limited range of Cq values only  

-  signal intensities of 2D MQMAS NMR spectra cannot be evaluated in a 

quantitative manner 

 

Example for the application of the MQMAS NMR technique 

- 2D MQMAS NMR spectrum of 
17

O atoms in Si
17

OSi (80%, CQ = 5.3 MHz) 

and Si
17

OAl bridges (20%, CQ = 3.5 MHz) of a crystalline aluminosilicate 

[Freude 1] 
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3. Applications 

3.1 Determination of the Framework nSi/nAl Ratio of Crystalline 

Aluminosilicates via 
29

Si HPDEC MAS NMR 

 

The isotropic chemical shift Si of 
29

Si atoms (
29

Si: spin I = 1/2) of crystalline 

aluminosilicates depends in a characteristic manner on the type and number of 

atoms at the directly neighboured T positions (see bottom). 

                      

Therefore, the lattice nSi/nAl ratio n these crystalline solids can be calculated by 

the relative intensities ISi(nAl) of the 
29

Si MAS NMR signals of the Si(nAl) 

species via: 

         nSi/nAl =  
 


4

0

4

0

)()( 25.0/
n n

nAlSinAlSi InI     (53) 

 

This method allows the investigation of changes in the lattice nSi/nAl ratio, e.g., 

due to dealumination procedures or catalytic applications. 

For studying the aluminum content of the lattice of a crystalline 

aluminosilicate, 
29

Si MAS NMR measurements were performed at B0 = 9.4 T 
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corresponding to 0 = 79.4 MHz, with single-pulse excitation (/2), 
1
H high 

power decoupling (HPDEC) and rot = 4 kHz.  

For the evaluation, the 
29

Si HPDEC MAS NMR spectrum was 

decomposed in the signal components and their relative intensities ISi(nAl) were 

determined. The calculation of the lattice nSi/nAl ratio via Equ. (53) gave nSi/nAl = 

2.73. 

 

 

3.2 Determination of the H-H Distance of Crystal Waster in Gypsum  

via 
1
H Solid-State NMR 

 

Gypsum crystals (CaSO42H2O) contain strongly bound isolated water mole-

cules. The statically recorded 
1
H NMR spectrum of these water molecules 

consists of a Pake doublet (
1
H: spin I = 1/2). Via the distance of the singularities 

of this doublet, the H-H distance rHH inside the water molecule can be 

determined (see Section 1.5). For the investigation of this H-H distance, an 
1
H 

Si(1Al): 

62.2% 

Si(0Al): 

32.6% 

Si(2Al): 

14.6% 

Si(3Al): 

13.8% SiO2: 9.4% 
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echo NMR spectrum was recorded at B0 = 9.4 T corresponding to 0 = 400.1 

MHz and with a pulse delay of 10 µs. 

The evaluation of the distance of the Pake doublet singularities in the 
1
H 

echo NMR spectrum gave a value of 113 ppm. The H-H distance rHH was 

calculated via Equ. (23) using H = 2.67510
8
 m

2
V

-1
s

-2
, ħ = 1.054589 10

-34
 VAs

2
, 

and µ0 = 1.2566 10
-6

 VsA
-1

m
-1

. The H-H distance of rHH = 1.585 Å obtained by 

this way is in good agreement with the value of 1.533 Å determined by X-ray 

diffraction. 

 

 

3.3 Determination of the 
13

C Shielding Parameters of Glycine via  

13
C CP MAS NMR 

 

Glycine (NH2CH2COOH) is a solid material at room temperature (melting point 

232 to 236
o
C). Using the cross polarization (CP) technique in combination with 

the rapid sample spinning around an axis in the magic angle (MAS), it is 

113 ppm: 45.2 kHz = (3/4) DI   
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possible to record 
13

C solid-state NMR spectra (
13

C: spin I = 1/2) of glycine with 

natural abundance of the 
13

C isotope in an order of few minutes.  

For studying glycine, a 
13

C CPMAS NMR spectrum was recorded at B0 = 

9.4 T corresponding to 0 = 100.6 MHz, with a contact pulse of 4 ms, and rot = 

2 kHz.  

 

The simulation of the 
13

C CPMAS NMR sideband pattern of glycine 

delivered anisotropies of the chemical shielding of 1 = -67.7 ppm and 2 = 

16.1 ppm and asymmetry parameters of CSA,1 = 0.9 and CSA,2 ≈ 0. These very 

different values of the shielding parameters for C1 and C2 (see Scheme on top) 

agree very well with the different symmetries of the local structures of these 

carbon atoms.    

 

 

signal 1                  signal 2 

iso,1 = 173.5 ppm 
 

iso,2 = 42.5 ppm 
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3.4 Investigation of the Na
+
 Population in Dehydrated Zeolite  

Na-Y via 
23

Na MAS NMR 

 

In zeolite Na-Y, the negative framework charges in the local structure of 

framework aluminum atoms are compensated by extra-framework Na
+
 cations 

(
23

Na: spin I = 3/2). These Na
+ 

cations can be located in the centre of hexagonal 

prisms (SI, see below) or in front of a 6-ring window (SI’, SII, see below). At 

these crystallographic positions, the Na
+ 

cations are involved in very different 

quadrupolar interactions (QCC corresponds to Cq). 

 

 

 

For studying the population of the Na
+
 sites in dehydrated zeolite Na-Y, a 

23
Na 

MAS NMR spectrum was recorded at B0 = 9.4 T corresponding to 0 = 105.8 

MHz, with single-pulse excitation (/6), rot = 12 kHz. 

The simulation of this 
23

Na MAS NMR spectrum delivered quadrupole 

coupling constants CQ,1 and CQ,2 of 0.9 MHz (SI) and 3.9 MHz (SI‘, SII), and 

relative intensities of I1 = 29.5 % (SI) and I2 = 70.5 % (SI‘, SII). The above-

mentioned relative intensities correspond to the Na
+
 population ratio of the 

cation positions SI and SI’+SII, respectively, in dehydrated zeolite Na-Y.     
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Attachment 1 

 

Knight Shift of NMR Signals of 
29

Si and 
27

Al Nuclei in the Neighbourhood 

of Paramagnetic Centres   

 

 

    G. Engelhardt et al., Chem. Commun, 1996, 729 
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Attachment 2 

 

Composition of a Pake Doublet of Nuclei I in the whole Range of ik Angles 

and via Mirror Imaging of the two Tensors for mS = ± 1/2 of the 

Neighboured Nuclei S 
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Attachment 3 

 

Influence of the Local Structure and Local Bonds on the Principal Axis 

Values of the Shielding Tensor of 
13

C Nuclei 

 

 

 
spherical symmetry: same shielding 

values 
ii
 in all directions 

 

 

 

 

non-axial symmetry: different 

shielding values 
ii
 in all directions 

 

 

 

axial symmetry: shielding values 
ii
  

in two direction are equal 
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