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Solid-state NMR spectroscopy:  Hamiltonians 
 
___________________________________________________________________________ 
 
Hamiltonians:  Htotal = H0 + HCS + HDI + HQ + HK + HJ  (1) 
 
 
H0 :   Zeeman interaction  IzB0 of nuclear spins I 

in the external magnetic field B0    109 s-1 

HCS :   chemical shielding interaction caused 
by the electrons surrounding the nuclei   5  103 s-1 

HDI :   dipolar interaction with magnetic dipoles  
of other nuclei in the local structure    5  104 s-1 

HQ :   quadrupolar interaction of the electric quadrupole 
moment with the electric field gradient   107 s-1 

HK :   Knight shift due to the Fermi contact interaction 
between the nuclei and conduction electrons  105 s-1 

HJ :   indirect nuclear-nuclear coupling by simultaneous 
coupling of the electrons      103 s-1 

 
In most applications of solid-state NMR spectroscopy, HJ is neglected since this 
splitting is overlapped by the stronger solid-state interactions 
 
Generally, the Hamiltonians H can be written in the form:   

 
H = C 

 zyx ,,,

I  R
  A     

     
where I and A are vectors of the nuclear spin and, e.g., of the magnetic field, while 
R

 is a second rank tensor describing the interaction and C is a typical constant 
of each interaction :   
 

   H = C[Ix, Iy, Iz]
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In the principal axis system (PAS) of the microscopic unit, the tensor R

 consists 
of diagonal elements only. All other elements vanish.  
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Solid-state NMR spectroscopy:  Hamiltonians 
 
___________________________________________________________________________ 
 
Another way to describe the Hamiltonians in the principal axis system of the 
microscopic unit is [Freude1]: 
 

    HC


2

0k





k

kq

(-1)q TkqVk-q    (4) 

 
with the irreducible spherical tensors Tkq (spin term) and Vkq (local term). In Table 
1, the operators of the Hamiltonians HCS, HDI, HQ are summarized. 
 
Table 1 
Elements of the irreducible spherical tensors Tkq and Vkq of the Hamiltonians H ( 
= CS, DI, Q) in the principal axis system (PAS) [Freude1]. 
 
interaction/ 
parameter 

chemical shielding 
interaction, 

HCS 

homonuclear 
dipolar interaction*, 

HDI 

quadrupolar 
interaction, 

HQ 
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*) for heteronuclear dipolar interactions, T20 must be substituted by 
6

1
IziIzk  

 

If the Hamiltonian is given by H = H’ + H’’ with [H0, H’] = 0 and [H0, H’’]  
0, then H’ is the secular part. 
 
Generally, the secular part is used to describe the NMR line shapes. In this case, 
only the tensor elements with k = 2 and q = 0 in Table 1 have to be considered. 
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Solid-state NMR spectroscopy:  Hamiltonians 
 
___________________________________________________________________________ 
 
The tensors V’kq (local term) in the laboratory axis system (LAB) are related to Vkq 
in the principal axis frame by the Wigner rotation matrices Dl

m’m(R): 
 

   V’kq = 




k

kq '

 Dk
q’q(R) Vkq      (5) 

 
where Dk

q’q(R) denote matrix elements of three-dimensional rotations. 
 
The matrix elements Dk

q’q(R) can be written as: 
 
   Dk

q’q() = exp{iq’} dk
q’q() exp{iq}   (6) 

 
with the Euler angles ,  and (see [Rose1]). 
 
The elements dk

q’q() of the reduced Wigner matrices depend on the angle  only. 
 
Table 2 gives components of V’kq, which were transformed from the principal axis 
system (PAS) into the laboratory axis system (LAB) by the Euler angles  and  
via equation (6). 
 
Table 2 
Elements of the irreducible spherical tensor V’kq for the different Hamiltonians H 
( = CS, DI, Q) transformed into the laboratory axis system (LAB) [Freude1]. 
 
interaction/ 
element 

chemical shielding 
interaction 

homonuclear dipolar 
interaction between Ii 

and Ik
* 
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V’20 
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with:    F(,) = 








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   (7) 

and    
isozz

yyxx








  (asymmetry parameter of the chemical  

                                                               shielding interaction)   (8) 

or   
zz

yyxx

V

VV 
   (asymmetry parameter of the quadrupolar  

   interaction)    (9) 
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Solid-state NMR spectroscopy:  Chemical shielding interaction 
 
___________________________________________________________________________ 
 
In the principal axis system (PAS), the Hamiltonian of the chemical shielding 
interaction is given by: 
 
   HCS =  IB0       (10) 
 
with the shielding tensor 

In the PAS, the shielding tensor is reduced to its diagonal elements xxyy andzz
with zz yy xx . 
 
The shift of the resonance frequency in the field B0 is due to the'zz component in 
the laboratory frame (LAB).  
 
A rotational transformation with the Euler angles  and  leads to: 
 
  'zz = xx sin2cos2 + yy sin2sin2 + zz cos2  (11) 
 
It is convenient to introduce the isotropic part iso, the shielding anisotropy  and 
the asymmetry parameter (see also eq. (8)): 
 

   iso = 
3

1 (xx+yy+zz)      (12) 

 
    = (zziso)       (13) 
 

   





 )( xxyy         

 
Transformation of the Hamiltonian into the LAB leads to: 
 

  HCS =  IzB0[iso +  









 
2cossin

22

1cos3 2
2 ] (15) 

 
corresponding to a resonance frequency  of: 
 

   = 0[(1-iso ) 









 
2cossin

22

1cos3 2
2 ]  (16) 

 



Michael Hunger, University of Stuttgart, Institute of Chemical Technology 5 

Solid-state NMR spectroscopy:  Chemical shielding interaction 
 
___________________________________________________________________________ 
 
In a liquid sample, the rapid molecular reorientation averages to zero the angle-
dependent terms in equation (16) and for  follows: 
 
   = 0(1 iso)        (17) 
 
For a polycrystalline sample, the Euler angles  and  vary from crystallite to 
crystallite and the resonance frequency ranges from  = 0(1 iso  to  
 = 0[1 iso /2)(1+)] in Figure 1. 
 
Typically observed line shapes are given in Figure 1 for the general case (left) and 
for the case of an axial symmetry, i.e.,  (right).
 
In the latter case, often following assignments are used: 
 
   = zz         (18) 
 
   = xx = yy        (19) 
 
 
 

    
1 2    xx                          yy                                           zz           

1 2
 

xx  =yy
zz  

 
Figure 1 
Line shapes of powders samples caused by chemical shielding interaction, general 
case (left) and axial symmetry (right). 
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Solid-state NMR spectroscopy:  Dipolar interaction 
 
___________________________________________________________________________ 
 
In the laboratory frame, the Hamiltonians of dipolar interactions are given by (see 
Tables 1 and 2): 
 
a) Homonuclear dipolar interaction (i = k) 
 

  Hhomo.DI = 




4

02ki  






 
2

cos311 2

3

ik

ikr


(3IziIzkIiIk)   (20) 

 
b) Heteronuclear dipolar interaction 
 

  Hhetero.DI = 




4

02ki  






 
2

cos311 2

3

ik

ikr


IziIzk    (21) 

 
By using the raising and lowering operators I+ = Ix + iIy and I= Ix – iIy, the 
Hamiltonian can be written: 
 

  HDI = 




4

02ki   ik

ikr
2

3
cos31

1
 [IziIzk

4

1 I+iIk + IiIk)]  (22) 

 

With    DI = (




4

0ki )/rik
3       (23) 

 
and    A = ( ik2cos31 )IziIzk      (24) 
 

   B = 
4

1  ik2cos31 I+iIk + IiIk]    (25) 

follows  
HDI = DI(A + B)        (26) 

 
Term A is the so-called static part, which describes the modification of the value of 
B0 at the sites of the resonating nuclei and causes the dispersion of the Zeeman 
levels and Larmor frequencies. 
 
Term B is called flip-flop term and describes the polarization transfer between 
neighboring spins, also called spin diffusion. 
 
For a heteronuclear coupling, the Zeeman levels are not equidistant and, therefore, 
term B vanishes. 
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Solid-state NMR spectroscopy:  Dipolar interaction 
 
___________________________________________________________________________ 
 
Spectra due to the dipolar coupling of isolated spin pairs with I = ½ consist of two 
subspectra with inverse signs, corresponding to the two transitions with m = 1. 
 
For a homonuclear dipolar coupling, two absorption lines (fixed angle ik) occur at 
the frequencies (see Fig. 2, left): 
 

   1 = 0  
4

3 DI( ik2cos31 )       (27) 

and 

2 = 0  
4

3 DI( ik2cos31 )     (28) 

 
For heteronuclear dipolar coupling, term B (eq. (25)) disappears and the lines occur 
at:  

   1 = 0  
2

1 DI( ik2cos31 )     (29) 

and 

2 = 0  
2

1 DI( ik2cos31 )     (30) 

 
In the case of a powder, the different angles ik of the spin pairs in different 
crystallites cause patterns as shown in Figure 2, right: 
 
 

       

3/2 (3cos -1) DI ik
2

          

3/2 DI

 
 
Figure 2 
Theoretical spectra caused by pairs of homonuclear spins in a single crystal (left) 
and in a powder (right). 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 
___________________________________________________________________________ 
 
About 100 isotopes exhibit a nuclear spin I > ½, i.e., are quadrupolar nuclei. 
 
For nuclei with spin I > ½, the electric charge distribution (r) in the nucleus is not 
spherical and causes an electric quadrupole moment eQ [Fraiss1]: 
 

  eQ = (r) r2 (3cos2-1) dv       (31) 
 
where the integration is taken over the whole space of which dv is the volume 
element. 
 
In this case, to the orientation of the magnetic moment µ in B0 is added the 
orientation energy EQ of the electric quadrupole moment eQ in the electric field 
related to the distribution of charges in the local structure: 
 

  EQ =  (r) V(r) dv        (32) 
 
with the potential V(r) of the electric field. The electric field gradient is a traceless 
second rank tensor: 
 

  Vij = 
ji

V


 2

   with   i, j = x,y,z      (33) 

 
In the principal axis system, the electric field gradient Vij is diagonal with Vzz  
Vyy  Vxx and Vzz = eq. 
 
According to Tables 1 and 2, the Hamiltonian HQ of the quadrupolar interaction is: 
 

  HQ = 
)12(4

2

II

qQe [3Iz
2I(I+1)] 










 
2cossin

22

1cos3 2
2

  (34) 

 
The asymmetry parameter  of the electric field gradient is given by equation (9). 
 
Commonly, the quadruple coupling constant Cqcc (also Cq or QCC) is given by: 
 

   Cqcc = 
h

qQe2

        (35) 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 
___________________________________________________________________________ 
 
while the quadrupole frequency is defined by: 
 

   Q = Q / 2 = 
hII

qQe

)12(2

3 2


= 

)12(2

3

II

Cqcc     (36) 

 
If HQ << H0 and at high field, the quadrupolar interaction is treated as a 
perturbation. 
 
The first order perturbation energy Em

(1)is: 
 

   Em
(1) = 

6

1 Q(3cos2-1)[3m2-I(I+1)]    (37) 

 
The energy difference between states m-1 and m gives the resonance frequencies: 
  

   m
 = 0 + 

2

1 Q(3cos2 -1)(1-2m)    (38) 

 
In the case of m = ½, which corresponds to the central transition, follows m

(1) = 
. 
 
Hence, the first order perturbation term describes the splitting into central and 
satellite transitions as illustrated for a spin I = 3/2 system in Figure 3. 
 

                     

m

3/2

1/2

+1/2

+3/2

  Zeeman                Zeeman + quadrupolar 
interaction                       interaction

central
transition

satellite
transition

satellite
transition

  = (1/2) (3cos -1)Q
2



 0 +  2

 0 -  2

0  

 
 
Figure 3 
Level scheme of a spin I = 3/2 system with quadrupolar interaction. 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 
___________________________________________________________________________ 
 
The spectra resulting for spin I = 3/2 involved in quadrupolar interactions are given 
in Figure 4. 
 

      



  
                 

Q

Q
Q      

 
Figure 4 
Theoretical spectra of a spin I = 3/2 system with quadrupolar interaction in a single 
crystal (left) and a powder (right). 
 
 
The relative intensities of the central transitions (CT) and satellite transitions (ST) 
of nuclei involved in quadrupolar interactions are given by: 
 

  I(CT,ST)  = 
)12)(1(

)1()1(

2

3




III

mmII       (39) 

 
Relative intensities I(CT,ST) of spin I = 1 to I = 5/2 systems: 
 
  Transition type:  ST     ST     ST     ST     CT     ST      ST     ST     ST            
  ___________________________________________________________ 
 I = 1     1/2  1/2  
 
 I = 3/2   3/10  4/10  3/10 
 
 I = 2   2/10  3/10  3/10  2/10 
 
 I = 5/2   5/35  8/35  9/35  8/35  5/35 
 
 
In the cases of I = 1 and I = 2, no central transition occurs. 
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 
___________________________________________________________________________ 
 
The first-order and second-order Hamiltonians are given by equations (40) and 
(41):  

   HQ
(1) = 

6
Qh

[3Iz
2I(I+1)]       (40) 

   

 HQ
(2) = 

0

2

9
Qh















 






   2222

2
2112

2

2

1
)1(

4

1
)1(22 VVIIIIVVIIII zzzz  (41) 

 
with the tensor elements V2k in Table 1 (Freude1). The second-order frequency 
functions are given by equations (42) and (43):  
 

m,m+1
(2) = 

0

2

18
Q {[24m(m+1)-4I(I+1)+9]V21V2-1 

  + [6m(m+1)-2I(I+1)+3]V22V2-2}       (42) 
 
 

m,-m
(2) = 

0

2

18
Qm

 {[4I(I+1)-8m2-1]V21V2-1  

  + [2I(I+1)-2m2-1]V22V2-2}        (43) 
 
for single and symmetric quantum transitions, respectively.  
 
In the laboratory frame and in the case of the central transition (m = 1/2   m = 
+1/2), the second-order frequency function 1/2

(2) is [Freude1]: 
 

  1/2
(2) =  



 

4

3
)1(

6 0

2

IIQ




(Acos4cos2C  (44) 

 
with  

  A =  2cos
8

3
2cos

4

9

8

27 22      (45) 

 

  B =  2cos
4

3
2cos2

2

1

4

15 222      (46) 

 

  C =  2cos
8

3
2cos

4

1

3

1

8

3 222       (47)
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Solid-state NMR spectroscopy:  Quadrupolar interaction 
 
___________________________________________________________________________ 
 
Equation (44) allows the calculation of the field-dependent second-order 
quadrupolar frequency shift qs of the center of gravity cg of the central transition 
in relation to the resonance position observed without quadrupolar interaction: 
 
  qs = cg – 0 (1-) 


 )
3

1
1(

4

3
)1(

30

1 2

0

2









 IIQ      (48) 

 
 
The difference  between the center of gravity of the satellite transitions (mean 
resonance position of the first satellites) and of the central transition is given by 
[Freude1]: 
 
 

   = 









3
19

30

2

0

2 


Q        (49) 

 
 
Hence, there are four methods to determine Q: 
 
1) In the case of weak quadrupolar interaction, the distance of the singularities of 

the satellite transitions are evaluated or simulated. 
 
2) In the case of strong quadrupolar interaction, the shape in the central transition 

is simulated. 
 
3) The field-dependent second-order shift is evaluated. 
 
4) The difference between the centers of gravity of the satellite transitions 

(average resonance position of the first satellites) and of the central transition 
is evaluated. 
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Solid-state NMR spectroscopy:  Knight shift 
 
___________________________________________________________________________ 
 
In metals and metallic particles, the spins of conduction electrons with ‘s’-
character are polarized by B0 and give rise to an additional shift. This shift is due to 
the Fermi contact interaction of the conduction electrons with the nuclear spins. 
 
The contact interaction results in an isotropic hyperfine interaction constant 
[Fraiss1]: 

   a = 
F

ne

2
)0(

3

8
        (50) 

 
where 

F

2
)0(  denotes the average density of the conduction electron wave 

function with the energy EF at the nuclear position. 
 
Due to high mobility of the conduction electrons, an average value of all hyperfine 
splittings is observed, leading to the relative shift  or Knight shift K: 
 

   K = 
0
  = 

ne

Pa




       (51) 

 
with the Pauli susceptibility P  of the conduction electrons and the gyromagnetic 
ratios e and n of the electrons and the coupled nuclei, respectively. 
 
The temperature dependence of the Knight shift is given by the Korringa relation: 
 

   K2 = 
TT

S
k n

e

B 1

2
1

4 











        (52) 

 
with the spin-lattice relaxation time T1, the temperature T, and the scaling factor S, 
which has the value 1 for non-interacting electrons in a three-dimensional system 
(not on a surface!). 
 
The Knight shift K is orders of magnitude larger than the chemical shielding iso 
and has normally a positive sign: 
 
    = 0(1 - iso + K)      (53) 
 
The Hamiltonian HK is given by:  
 
    HK =  IB0       (54) 
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Solid-state NMR spectroscopy:  The method of moments 
 
___________________________________________________________________________ 
 
An important approach to evaluate the shapes of solid-state NMR signals is the 
method of moments. 

According to van Vleck, the free induction decay G(t) can be described by a 
Taylor evolution of the moments Mn [Abra1]: 
 

   G(t) =  






0 !n
n

n

M
n

ti       (55) 

 
with the n-th moment   

Mn = 
















)()(

)()()(

00

000





dg

dgn

    (56) 

 
and the frequency function g(-0) describing the intensity distribution. Since in 
the most cases, the odd-numbered moments vanish, G(t) follows to: 
 

   G(t) = 1  .......
!4!2

4422 t
M

t
M

      (57) 

 
Using equation (55), the even-numbered moments can be determined: 
 

   M2n = (1)n 
n

n

dt

d
2

2

G(t)t=0      (58) 

 
According to equation (56), the second moment can be obtained by an evaluation 
of the spectrum using: 
 

   M2 = 




 )()()( 00
2

0  dg     (59) 

 
For Gaussian line shapes, also the full line width at half amplitude 1/2 can be 
used to determine the second moment M2: 
 

   1/2 = 22ln2
1

M


      (60) 

 

   M2 = 
2ln2

2
2/1

2  
       (61) 
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Solid-state NMR spectroscopy:  The method of moments 
 
___________________________________________________________________________ 
 
Considering the signal shapes in Figures 1 and 2 with 13   CS  and 

DIDI 
2

3
 , the second moments of the chemical shielding interaction and the 

dipolar interaction, respectively, are given by: 
 

   M2,CS = 










3

1
5

)(

9

4 22 CS      (62) 

and 

   M2,DI = 
5

2
DI

       (63) 

 
For a signal broadening by a quadrupolar interaction, the second moment of the 
central transition is given by: 
 

   M2 = 2

7

23
qs         (64) 

 
with 

   qs= - 





















 

3
1

4

3
)1(

30

2

0

2 



IIQ     (65) 

 
 
 
A more general approach is to calculate the second moment via the Hamiltonian 
H of the interaction  under study according to: 
 

   M2 = 
  
 2

2,

x

y

ITr

IHTr         (66) 

 
For the secular part of the homonuclear dipolar interaction follows: 
 

  M2,II = 
 








 








N

i

N

ik ik

ik
I rN

II
1

6

222

024 1

2

cos311

4
)1(3





     (67) 
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Solid-state NMR spectroscopy:  The method of moments 
 
___________________________________________________________________________ 
 
For the secular part of the heteronuclear dipolar interaction follows: 
 

  M2,IS = 
 








 








N

i

N

k ik

ik
SI rN

SS
1 1

6

222

0222 1

2

cos311

4
)1(

4

3 



    (68) 

 
with the powder average: 
 

  
5

1

2

cos31
22








 

powder

ik
      (69) 

 
In the following, a simple approach for calculating the second moment of powder 
signals broadened by dipolar interactions is demonstrated. Generally, the second 
moment M2 due to dipolar interactions of an ensemble of I and S spins is the sum 
of the homonuclear term M2,II and the heteronuclear term M2,IS, which can be 
described by: 
 

   M2 =  
66

S

S

I

I

r

C

r

C
        (70) 

with  

   CI = 22

2

0

4
)1(

5

3
III 










   (1068)     (71) 

 

   CS = 22

2

0

4
)1(

15

4
SSS 










    (1068)    (72) 

 
The factor 1068 is valid for M2 values given in 10-8 T2 and r in Å and: 
 

   
 


N

i

N

ik ikI rNr 1
66

111        (73) 

 

   
 


N

i

N

k ikS rNr 1 1
66

111        (74) 

 
Comparison of equations (69) and (70) leads to: 
 

   CS = 
9

4 CI          (75) 
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Solid-state NMR spectroscopy:  The method of moments 
 
___________________________________________________________________________ 
 
The value CI of the nucleus X can be calculated by: 
 

  CI(X) = CI(1H) 

4

3
)1( II

21
0

2
0

)(

)(

H

X




      (76) 

 
with CI(1H) = 358.1 and the resonance frequencies 0(X) and 0(1H) of the nuclei X 
and 1H, respectively. 
 
In a field with a 1H resonance frequency of 500 MHz, e.g., the 13C and the 27Al 
resonance frequencies are 125.6 MHz and 130.3 MHz, respectively, and CI and CS 
follow to: 
 

   CI(13C) = 358.1
2

500

6.125

4

3
4

3







  = 22.6    (77) 

and  

   CS(13C) = 
9

4 22.6 = 10.0      (78) 

 
or  

   CI(27Al) = 358.1
2

500

3.130

4

3
4

35







 = 283.7    (79) 

 
and 

   CS(27Al) = 
9

4 283.7 = 126.1     (80) 

 
In the local structure of bridging OH groups (SiOHAl) in zeolites, the hydroxyl 
proton is involved in a heteronuclear dipolar interaction with one framework 
aluminium atom. This interaction is the dominating line broadening mechanism in 
the 1H NMR spectrum. 
 
By an evaluation of the 1H NMR line width, a second moment of M2 = 0.710-8 T2 
was determined.The second term of equation (70) yields an H-Al distance of 2.377 
Å. 
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Solid-state NMR spectroscopy:  Experimental techniques /  
       Excitation 
___________________________________________________________________________ 
 
The radio frequency (rf) pulses applied to excite a spin system is described by: 
 
    Hrf = xIt)cos(2 1       (81) 
 
with the nutation frequency 1 = B1. This nutation frequency has values of 
1400 kHz.  
 
Generally, the pulse length tp is given by:  
 

    tp = 
1
  = 

1B
       (82a) 

 
with the nutation angle  = /2,  … . The frequency range , which is excited 
by a pulse with the length tp, amounts to: 
 
 
      1/(tp)       (82b) 
 
 
Aluminum nuclei with a Cqcc value of 10 MHz, e.g., cause a 27Al NMR signal with  
a spectral range  of ca. 3 MHz (see eq. (36) and Fig. 4, right). The full excitation 
of this spectral range requires a pulse with a length of tp  0.1 µs!    
 
In the case of a single /2 pulse excitation, the repetition time trep should be ca. 5  
T1. Otherwise, saturation of the magnetization occurs.   
          
Shorter repetition times require the application of the Ernst angle opt (cos opt =  
exp{-trep/T1}, which is optimised to decrease saturation effects.  
 
For a spin system with a T1 time of 5 s, the following optimised nutation angles as 
a function of the repetition time should be used: 
 
  
  repetition time  7.5 s  5.0 s  2.5 s 
    
  opt   77o  68o  53o  
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Solid-state NMR spectroscopy:  Experimental techniques /  
       Excitation 
___________________________________________________________________________ 
 
For the strongest solid-state interaction causing broadest frequency distribution 
functions, the quadrupolar interaction, following cases have to be distinguished: 
 
    |Hrf| > |HQ|   (*) 
and  
    |Hrf| < |HQ|   (**) 
 
 
A so-called hard pulse (short duration, high power) can perform a nonselective 
excitation of the whole quadrupolar spectrum if the rf field strength meets (*), 
while a soft pulse (long duration, low power) cause a selective excitation of single 
transitions (m = I, I+1, …, I1) such as the central transition (m = 1/2). 
 
 
In the case of a nonselective excitation of all transitions, the intensity of the FID 

)0(1,
venonselecti

mmG  after a pulse with the rf field strength 1 and the pulse duration tp is 

[Freude2]: 
 

)sin(
)12)(1(2

)1()1(3
)0( 11, p

venonselecti
mm t

III

mmII
G 




    (83) 

 
Equation (83) gives the relative intensities of all transitions (compare eq. (39)). 
 
 
The selective excitation leads to an FID of: 
 

  
    ))1()1(sin(

)12)(1(2

)1()1(3
)0( 11, p

selective
mm tmmII

III

mmII
G 




  (84) 

 
 
Comparison of equations (83) and (84) reveals that the maximum intensity is 
reduced by  )1()1(  mmII , but the effective nutation frequency eff

1 is 
enhanced by the same value, i.e., for the central transition (m = -1/2) by: 
 

    11 )
2

1
(   Ieff        (85) 

 

For selective excitation, therefore, the nonselective /2 pulse devided by (I + 1/2) 
is the optimum pulse. 
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Solid-state NMR spectroscopy:  Experimental techniques / CP 
 
___________________________________________________________________________ 
 
Investigation of nuclei with small gyromagnetic ratio and low concentration can be 
improved by magnetization transfer from the abundant to the rare spins using cross 
polarization (CP). 
 
In the high-temperature approximation, the population differences NI and NS of 
spins I and S are in the ratio: 
 

    
S

I

S

I

N

N








       (86) 

 
Therefore, it is interesting to transfer magnetization from the 1H spins I to the rare 
spins S with a lower gyromagnetic ratio.  
 
In the cross polarization experiment, the abundant and rare spins are locked in a 
radio frequency field applying the pulse group shown in Figure 5. 
 

                                        

I

decoupling

free induction 
               decayS

t

t

/2)x

(contact
 pulse)y

   
Figure 5 
Pulse sequence of the cross polarization experiment.  
 
During the contact pulse, the spins I toggled by the (/2)x pulse to y and the spins I 
and S are locked along the B1 fields (see Figure 6, left). If 1,S = 1,I (Hartmann-
Hahn condition), magnetization transfer occurs (see Figure 6, right). 
 

       

z, B0

x

y

1,S

1,IS

I 

      

Erf

spins I spins S

I 1,IB S 1,SB=

  
 
Figure 6 
Spin-locking during irradiation of the contact pulse (left) and energy splitting in 
the rf field (right) fitting the Hartmann-Hahn condition. 
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Solid-state NMR spectroscopy:  Experimental techniques / CP 
 
___________________________________________________________________________ 
 
During the spin-locking in the rf fields, relaxation occurs with the characteristic 
time T1, which is the T1 time in the rotating frame.  
 
The time dependence of the spin S magnetization MS(t) is plotted in Figure 7 
[Michel1]. 
 

                     

M tS( )

t
tm

exp{- / }t T1 ,I

1-exp{- / }t TIS

   
Figure 7 
Time dependence of the spin S magnetization Ms(t). 
 
The decay of Ms(t) in Figure 7 depends on the relaxation T1,I of the spins I (dotted 
line) and the cross-polarization rate TIS

-1 given by: 
 

   
2/1

,2
,2 5

2

2

31












II
IS

IS M
M

T

       (87) 

 
with the second moment of heteronuclear (M2,IS) and homonuclear (M2,II) dipolar 
interaction (see eqs. (67) and (68)). 
 
The parameter  in Figure 7 corresponds to: 
 

    = 1 + 
I

IS

S

IS

T

T

T

T

,1,1 

        (88) 

 
The maximum spin S magnetization is reached after the time tm: 
 

   tm = 













IS

I

ISI

IIS

T

T

TT

TT ,1

,1

,1 ln 



       (89) 
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Solid-state NMR spectroscopy:  Experimental techniques / MAS 
 
___________________________________________________________________________ 
 
The technique of magic angle spinning (MAS) consists of a mechanical rotation of 
the sample with a frequency rot of up to 40 kHz  
 
For two spins I and S connected by a vector rIS, the angle  between B0 and rIS is 
given by (see Figure 8): 
 
  cos  = cos cos  + sin sin cosrott     (90) 
 

                                          

rot

B0

I

S




rIS

   
Figure 8 
Under fast sample rotation, the angle  between B0 and rIS is a function of time. 
 
With the mean values over a period 0cos trot  and 2/1cos2 trot  follows: 

 

  )1cos3)(1cos3(
2

1
1cos3 222        (91) 

 
This term cancels, if  = 54o 44’, the so-called magic angle. 
 
Effect of magic angle spinning on solid-state interactions exhibiting the geometric 
term (3 cos2 - 1): 
 
1) A homogeneous broadening is effectively reduced, if rot is larger than the 
line width without rotation. In the other case, for homonuclear dipolar interaction, 
the flip-flop term B hinders an averaging by MAS. 
 
2) For inhomogeneous broadening (anisotropic shielding interaction, 
heteronuclear dipolar interaction, quadrupolar interaction) and a rotation rate less 
than the anisotropy, the spectrum is reduced to its isotropic value and spinning 
sidebands occur at  = 0  n  rot with n = 1, 2 …. There are several methods to 
suppress spinning sidebands by irradiating pulse sequences (e.g. TOSS [Dixon1]). 
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Solid-state NMR spectroscopy:  Experimental techniques / MAS 
 
___________________________________________________________________________ 
 
For a thermal mobility of the nuclei under study with a correlation time c < 1/rot, 
the width of the MAS central line, 1/2

MAS, is given by [Andrew1]: 
 

  1/2
MAS = 











 222 )(41)(1

2

6

1

crot

c

crot

cM








    (92) 

 
with the static second moment M2 (see Figure 9). 
 

                                  

li
n

e  
w

i d
t h

 
 1
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1/M21/rot
c

MAS

without MAS
1/2, equ. (60)

6M /(15 )2 rot

   
Figure 9 
Line width 1/2 as a function of the correlation time c [Andrew1]. 
 
The influence of thermal motion on the decay GMAS(t) under MAS is [Pfeifer1]:  
 
   GMAS(t) = exp{-(M2,IS/3)[2J(rot, t)+J(2rot, t)]}  (93) 
with 

 J(rot, t) ) = ))cos(1(
))(1(

)1)((
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22
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
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22
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t
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
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
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Figure 10 
Calculated 1H MAS NMR spectra (rot = 3 kHz) of bridging OH groups in zeolite 
H-Y (M2,IS = 0.7  10-8 T2) characterized by different thermal mobilities (c). 
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Solid-state NMR spectroscopy:  Experimental techniques / MAS 
 
___________________________________________________________________________ 
 
The effect of MAS on quadrupolar broadening of the central transition is given by 
[Freude1]: 

   M2
MAS = 

2
2

0

2

3
1

4

3
)1(

304

1






















 





IIQ     (95) 

 

or   M2
MAS = 2

4

1
qs        (96) 

 
Hence, with equation (64) can be shown that the narrowing achieved by MAS is: 
 

   6.3
7

92

2

2 
MAS

static

M

M
      (97) 

 
This narrowing of the central transition is combined by a change in the line shape 
which can be described by equation (44), but modified terms A, B and C 
[Freude1]: 

  A =  2cos
48

7
2cos

8

7

16

21 22      (98) 

 

  B =  2cos
24

7
2cos

12

1

8

9 222       (99) 

 

  C =  2cos
48

7
2cos

8

1

16

5 22      (100) 

 
with the Euler angle  and the asymmetry parameter .  
 
 
 
 
 
 
 
 
 
 
 
Figure 11 
Line shapes of a central transition with  = 0.2, without (top) and with MAS 
(middle) and with DOR or MQMAS NMR (bottom). 
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Solid-state NMR spectroscopy:  Experimental techniques / 
Multiple-pulse sequences 

___________________________________________________________________________ 
 
In the case of strong homonuclear dipolar interactions and if anisotropy of 
chemical shift should be studied, averaging by multiple-pulse sequences is 
performed. 
 
By toggling the magnetization with 90o pulses along x (100), y (010) and z (001) 
for equal times, it is directed on average along (1,1,1) with the magic angle to the z 
(001) axis (see Figure 12). 
 

                                            

001

100

010

  
Figure 12 
The angle between the diagonal (111) and each side of a cube is equal to the magic 
angle. 
 
A pulse sequence to toggle the magnetization in an appropriate manner is shown in 
Figure 13. 
 

                   
0

t

aqu. aqu.cyclecycle
 

Figure 13 
Multiple-pulse sequence WAHUHA4 [Fraiss1]. 
 
The whole sequence consists of a repetition of n elementary cycles with the cycle 
time tc. At time zero, the magnetization lies along the z direction. The effect of the 
pulse sequence is to toggle the magnetization along the three axis. In the middle of 
the large window (aqu.) per cycle, a date point is sampled.  
 
In the most cases, multiple-pulse sequences cause a scaling of the chemical shift 
(1/ 3  for WAHUHA4) [Grimmer1]. 
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Solid-state NMR spectroscopy:  Experimental techniques / 
Multiple-pulse sequences 

___________________________________________________________________________ 
 
Using the pulse operators Px,y and P-x,-y: 
 

   Px,y = exp 





 yxI

i
,2




      (101) 

and 

   P-x,-y = exp 







yxI
i

,2




      (102) 

 
the pulse sequence shown in Figure 13 can be described by: 
 
  (, Px, 2, P-x, , Py, 2, P-y, )n      (103) 
 
According to the concept of the time averaged Hamiltonian, the behavior of the 
system at times ntc with the number n of cycles and the cycle time tc is given by:  
 

   
ct

c

tHdt
t

H
0

'' )(
1        (104) 

which leads to: 

    zyx HHHH 
3

1       (105) 

 
The Hamiltonian of homonuclear dipolar interaction (see eq. (20)) can be written: 
 

 Hz = 


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 
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With equations (101) and (102) follows: 
 

 Hx = exp 

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and 

 Hy = exp 
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Using equations (106) to (108), the averaged Hamiltonian in equation (105) gives: 
 

 H  = 
3

1 ik

ki

A


[(3IxiIxkIiIk) + (3IyiIykIiIk) + (3IziIzkIiIk)] = 0  (109) 
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In contrast to the first-order perturbation of quadrupolar interaction, which has an 
anisotropic part depending on the geometric term (3cos2-1) only (see eq. (38)), 
the second-order perturbation term describing the line shape of the central 
transition exhibits a more complicate anisotropic part (see eq. (44)). 
 
Using a representation where p denotes the quantum level p, symmetric coherences 
with the notation p/2  p/2 instead of m   m and for the case of fast sample 
rotation around an axis in the magic angle, the transition p/2,-p/2 is given by 
[Amour1]: 
 
  p/2,-p/2 = iso,p + aniso,p       (110) 
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The Euler angles  and  describe the rotor axis with respect to the principal axis 
system. dn,0

(4) are the reduced Wigner matrices [Rose1]. 
 
The anisotropic part in equation (110) disappears if the term with the functions of 
 in the last bracket of equation (111) is zero, which requires an additional rotation 
around an axis in an angle of 30.56 or 70.12o. 
 
This average is reached by double-oriented rotation (DOR) using a second inner 
rotor inside a large outer rotor (see Figure 14). 

                                  

outer

B0



inner

   
Figure 14 
Arrangement of the inner and outer rotor in a DOR NMR probe [Wu1]. 
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The multiple-quantum MAS (MQMAS) technique greatly enhances the resolution 
of spectra due to nuclei with a half-integer spin I > 1/2. Basically, this approach 
combines an excitation of non-observable multiple-quantum transitions {+m, -m} 
with the experimentally observed single-quantum transition {+1/2, -1/2} 
[Frydman1]. The phase development )(t  of a single or multiple-quantum 
coherence is: 
 

   
t

t



2

)(  p + p/2,-p/2      (112) 

 
The first term  includes the chemical shift and the resonance offset: 
 
    = iso0 – offset       (113) 
 
The second term of equation (112) corresponds to anisotropic term in equation 
(111). The multiple-quantum transitions are excited by a single high-power radio 
frequency pulse (Fig. 15). Subsequently, the multiple-quantum coherence (p = +m, 
-m) is allowed to evolve in t1. After the evolution period t1, a second pulse is 
applied, which converts the multiple-quantum coherences into the coherence p =  
-1. The signal is an echo, which is formed in the time period t2: 
  
                                  t2 = QA t1                                                                                                       (114) 
 
where QA is a term denoting a value of the quadrupolar anisotropy, and causing a 
refocusing of the anisotopic part. The two-dimensional Fourier transformation of 
the echo-decays t2 obtained for different pulse delays t1 leads to a two-dimensional 
MQMAS spectrum with featured signals lying along the quadrupolar anisotropy 
axis 2. The isotropic spectrum occurs along the 1-axis.   
   

                      

p

t1

t1 t2

z-filter
pulse

a)

b)

excitation
   pulse

excitation
   pulse

conversion
    pulse

conversion
    pulse

t2

p
echo

echo

 3
 2
 1
 0
-1
-2
-3

 3
 2
 1
 0
-1
-2
-3    

Figure 15 
Pulse sequence and coherence transfer pathway of an MQ experiment [Freude1]. 
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Structures of zeolites: 

                      
 
Dependence of the 29Si chemical shifts on the neighbouring T atoms: 

          
 
Framework nSi/nAl ratio: 
 

         nSi/nAl =  
 


4

0

4

0
)()( 25.0/

n n
nAlSinAlSi InI  
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29Si MAS NMR spectra of different aluminium-containing zeolites (top) and of 
their highly siliceous (bottom) forms [Thom1]: 
            

                   
     
 
Table of 29Si chemical shifts of Si(nAl) units in some selected zeolites [Karg1]: 
 

zeolite nSi/nAl Site Si(4Al) Si(3Al) Si(2Al) Si(1Al) Si(0Al) 

Y 2.5   T -83.8 -89.2 -94.5 -100.0 -105.5 
    T     -107.8 
Omega 3.1   T1  -89.1 -93.7 -98.8 -103.4 
    T2 -89.1 -93.7 -98.8 -107.0 -112.0 
    T1     -106.0 
    T2     -114.4 
mordenite 5.0   T1 to    

  T4 
  -100.1 -105.7 -112.1 

    T1     -112.2 
    T4     -113.1 
    T2 + T3     -115.0 
ZSM-5 20   T1 to    

  T12 
   -106.0 -112.0 
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Influence of the mean T-O-T angle  on the 29Si chemical shift [Engel1]: 
 
   29Si / ppm = 5.230 – 0.570      
  
 

  29Si / ppm = 223.9cos/(cos1) + 5n –7.2   (116)  
 
with the number n of aluminium atoms in the second coordination sphere. 
 
 
Experimental (top) and calculated (bottom) 29Si MAS NMR spectrum of siliceous 
zeolite ZSM-5 with 24 different T positions [Engel2]: 
 

                     
 
 

 



Michael Hunger, University of Stuttgart, Institute of Chemical Technology 32 

Solid-state NMR spectroscopy:  Applications  
__________________________________________________________________________ 
 
Study of the connectivities of silicon atoms in zeolite ZSM-39 by sampling the J-
coupling (ca. 110 Hz) with the two-dimensional 29Si COSY MAS NMR 
experiment [Fyfe1]: 
 
   

    
 

a) pulse sequence (parameter FD is a fixed delay of 5 ms) 
b) zeolite structure with T positions 
c) 2D COSY MAS NMR spectrum (stacked plot) 
d) 2D COSY MAS NMR spectrum (contour plot) 
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27Al MAS NMR of crystalline aluminosilicates (zeolite H-Y) containing 
tetrahedrally (AlIV) and octohedrally (AlVI) coordinated aluminum [Rocha1]: 
 

       
 
CP raises the intensities of signals due to atoms interacting with water molecules 
(hexa-aquo complexes, extra-framework aluminum). 
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1H MAS NMR spectroscopy of hydroxyl groups in zeolite Y (SiOH: ca. 1.8 ppm, 
SiOHAl: 3.9 to 4.2 ppm, MeOH: -0.5 to 5.6 ppm, ) exchanged with different 
cations (a-c) and after dealumination (d) [Hung1]: 

                 
 
Scheme of a NOESY NMR experiment sampling spin diffusion during : 
 

                           

I:  H
1



induction 
            decay

          t                                            t1 2
t

 

 
 
Contour plots of 1H NOESY MAS NMR experiments performed with dehydrated 
silicoaluminophosphate SAPO-5 and zeolite HZSM-5 [Hung1]: 
 

                
 
Cross peaks indicate spin diffusion between defect SiOH groups at 1.5 to 1.8 ppm 
and bridging OH groups at 3.8 to 4.3 ppm. 
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Equipment for the preparation of solid catalysts for in situ MAS NMR 
investigations of surface sites and adsorbate complexes [Munson1, Zhang1]: 
 

              
 
 
 
Scheme of a Laser heating system in a high-temperature MAS NMR probe 
[Mild1]: 
 

        
 
 
Temperatures up to 923 K at rotation frequencies of up to 3.5 kHz can be reached. 
 
Because of Curie’s law: 

                                               
Tk

BIIN
M

B3

)1( 0
22

0





            (117) 

 
the magnetization and decrease with increasing temperature T, which can be a 
limitation for NMR spectroscopy under in situ conditions. 
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Studies of reactions catalyzed by surface sites of microporous solids such as 
nitration of toluene with nitric acid and acetic anhydride on zeolite H-Beta [Hao1]: 
 
 

                     

CH3

CH3

NO2

 +   2  CH COOH3

zeolite  

    
 
27Al MAS NMR of octahedrally (AlVI) and tetrahedrally (AlIV) coordinated 
aluminium in zeolite H-Beta and 15N MAS NMR of reactants [Hao1]: 
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Continuation of nitration of toluene with nitric acid and acetic anhydride on zeolite 
H-Beta [Hao1]: 
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Double resonance pulse sequences for the investigation of bond geometries 
[Smith]: 
 
 
SEDOR (Spin Echo DOuble Resonance)  
 

                       0

t1



echo 


2 







I:

S:
t
 

 
 
The experiment is performed without application of MAS. During the first pulse 
delay of a /2---  echo sequence applied to the spins I, a single -pulse is 
applied to the spins S. This -pulse inverts the sign of the dipolar coupling, which 
perturbs the dipolar refocusing process and diminishes the echo intensity for 
coupled spin pairs I-S. 
 

SEDOR fraction: 

 

  Sf(t1) = 
0

10 )(

S

tSS 
        (118) 

with 

  S(t1) =   



0

2
1 sin)1cos3(cos dDt      (119) 

 
Here, D = IS /rIS

3, rIS defines the distance between the coupled spins I and S, and 
 is the angle between the internuclear vector rIS and the external magnetic field 
B0. S0 is the echo intensity without application of the -pulse to the spin S 
ensemble. As an example, SEDOR was used to determine the Al-P distance in the 
aluminophosphate AlPO4-5. A fitting of the SEDOR curve led to D = 405  10 Hz 
corresponding to rAl,P = 315  3 pm [Eck2]. 
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REDOR (Rotational Echo DOuble Resonance) 
 
 

                        


2 

echo 
I:

S:

Nc0 2 4  
 
 
Is in principle a SEDOR experiment in combination with MAS. A rotor 
synchronised echo sequence is applied to the spins I, which are detected after a 
time 2 equalling an even number Nc of rotation periods. For decoupling the 
dipolar interaction between the spins I and S, -pulses are applied to the spin S 
ensemble at every half rotation period Tr. The dipolar coupling is obtained by 
measuring the REDOR fraction, which describes the loss of the echo intensity as a 
function of the number of rotor periods: 

 

       

 
0

0 )(

S

TNSS rc  = 
)1(

1
2 SS

(NcTr)2 M2,IS     (120) 

 

 
M2,IS is the second moment of the heteronuclear dipolar interaction given in 
Equation (68). This term contains rIS, which is the distance between the coupled 
spins I and S. Again, S0 is the echo intensity obtained without application of -
pulses to the spin S ensemble. 
 As an example, zeolite H-Beta dealuminated by ammonium 
hexafluorosilicate was investigated with REDOR [Kao1]. The REDOR fraction of 
the signal of extra-framework aluminium atoms at 0 ppm gave a dipolar coupling 
constant corresponding to an Al-F distance of 180 to 220 pm. This finding 
indicates that the aluminum atoms occurring in extra-framework clusters of the 
dealuminated zeolite H-Beta under study are directly bound to fluorine atoms. 
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TRAPDOR (TRAnsfer of Population in DOuble Resonance) 
 

                     


2 

echo 

adiabatic
   pulse

adiabatic
   pulse

I:

S:

Nc0 2 4  
 
The TRAPDOR and REAPDOR experiments were designed specifically for the 
study of spins I interacting with quadrupolar nuclei having the spin S > 1/2. In the 
TRAPDOR experiment, a rotor synchronized echo sequence is applied to the spins 
I. During the pulse and echo delay, the quadrupolar nuclei with spin S are 
continuously irradiated, which leads in combination with MAS leads to 
rotationally induced level transitions. Since these level transitions are difficult to 
calculate, TRAPDOR is a qualitative experiment only.  
 
REAPDOR (Rotational Echo Adiabatic Passage Double Resonance) 
 

                    


2

echo 
I:

S:
T nr/

Nc0 2 4  
 
In contrast to TRAPDOR, a train of rotor synchronized -pulses is applied on the 
spins I at every half rotation period Tr. In the first half of the evolution period, the 
spins I will dephase as a result of the chemical shift anisotropy and the 
heteronuclear dipolar coupling. In the second half of the evolution period, the 
magnetization is refocused and an echo is formed. In the center of the evolution 
period, a so-called adiabatic passage pulse is applied to the spins S. (duration of 
Tr/3 to Tr/2). The dipolar dephasing of the spins I, which are coupled with spins S, 
can not be refocused in the echo and an decrease of the echo intensity occurs. The 
quantitative evaluation of the REAPDOR fraction is performed similar to the 
REDOR fraction. REAPDOR has been employed to study the local structure of 
silicon atoms in the framework of the aluminum substituted molecular sieve ETS-
10 [Gana1]. 
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27Al-31P correlation MAS NMR spectrum of the aluminophosphate VPI-5 [Eck1]: 
 

               
 
 

a) double resonance pulse experiment consisting of REDOR (rotational-echo 
double resonance) sequences  

b) 2D spectrum (contour plot) 
 
The experiment indicates a coupling of all phosphorus atoms with tetrahedrally 
coordinated framework aluminium. 
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Scheme of a DOR (double oriented rotation) rotor: 

                     
Suppression of sidebands caused by the outer DOR rotor (23Na DOR NMR of 
Na2SO4, rot,outer = 650 Hz): 
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Comparison 23Na static, MAS, and DOR NMR spectroscopy of sodium 
cyclotriphosphate Na3P3O9: 
 

       
 
 
Results of simulation: 
 

parameter Na1 Na2 
QCC 2.2 MHz 1.6 MHz 
 0.7 0.55 
iso 14.8 ppm 5.6 ppm 
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Local structure of sodium cations in dehydrated zeolite Na-Y: 

               
 
23Na MAS NMR (left) and 2D 23Na nutation MAS NMR spectrum of dehydrated 
zeolite Na-Y [Hung2]: 
 

     
 
Scheme of the 2D nutation NMR experiment: 
 

                          

S:  Na
23

pulse

induction 
            decay

       t          t  +  t         t1 1 i 2n
t
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23Na DOR NMR spectra of dehydrated zeolite Na-Y in different magnetic fields 
(left and right) and recorded with different sample spinning frequencies (top to 
bottom) [Hung2]: 
 

               

(121) 

(122) 

(123) 
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A suitable tool for the discussion of the value of quadrupolar coupling constants of 
27Al nuclei in AlO4 tetrahedra is the shear strain parameter  : 

 

      =



6

1
0tan(

i
i              (124)  

 

                                       

i

i i

i

 
 
 
Schematic drawing (top) of the structure of the aluminophosphate VPI-5 and 
correlation of the quadrupolar coupling constant Cq of 27Al nuclei as a function of 
the shear strain parameter  of AlO4 tetrahedra in aluminate sodalites (, ), 

feldspars (), and VPI-5() [Karg1]: 
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17O 3QMAS NMR spectra of zeolite Na-ZSM-5 after the 2D Fourier 
transformation (left) and after the shearing transformation (right) [Freude1]: 
 
 

     
 
The spectra consist of signals due to SiOSi (80%, CQ = 5.3 MHz) and SiOAl (20%, 
CQ = 3.5 MHz) bridges. 
 
Before shearing, the chemical shifts along the two dimensions are given by 
[Amour2]: 
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and 
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with the isotropic chemical shift iso and the second-order quadrupolar shift qs. 

 
 

The shearing modifies shift values along the 1 axis according to [Amour2]: 
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