Vorlesung "Festkörper-NMR-Spektroskopie" des Moduls "Strukturaufklärung" für Chemie-Bachelor-Studenten an der Universität Stuttgart gehalten von apl. Prof. Dr. Michael Hunger bis Sommersemester 2020

Bachelor-Vorlesung "Strukturaufklärung"

Vorlesungsblock "Festkörper-NMR-Spektroskopie"

Apl. Prof. Dr. Michael Hunger:

1.	Einführung zu Kernspin-Wechselwirkungen in Festkörpern	3		
1.1	Übersicht zu Kernspin-Wechselwirkungen	3		
1.2	Zeeman-Wechselwirkung	4		
1.3	Quadrupol-Wechselwirkung	5		
1.4	Knight-Verschiebung	9		
1.5	Dipol-Dipol-Wechselwirkung	10		
1.6	Anisotrope chemische Abschirmung bzw. Verschiebung	12		
1.7	J-Kopplung bzw. indirekte Kernspin-Kernspin-Wechselwirkung	13		
2.	Messtechniken der Festkörper-NMR-Spektroskopie	14		
2.1	Sättigungsfreie Impulsanregung großer Spektrenbereiche	14		
2.2	Signalverstärkung durch Kreuzpolarisation (CP)	15		
2.3	Schnelle Probenrotation um den magischen Winkel (MAS)	17		
2.5	Vollständige Ausmittelung der quadrupolaren Wechselwirkung			
	mittels Probenrotation um zwei Achsen (DOR)	21		
2.6	Vollständige Ausmittelung der quadrupolaren Wechselwirkung mit			
	Hilfe von Mehrquanten-NMR-Experimenten (MQ)	22		
3.	Anwendungsbeispiele	24		
3.1	Bestimmung des Gerüst- n_{Si}/n_{Al} -Verhältnisses von kristallinen			
	Alumosilicaten mittels ²⁹ Si-HPDEC-MAS-NMR	24		
3.2	Bestimmung des H-H-Abstandes von Kristallwasser im Gips mittels			
	¹ H-Festkörper-NMR	25		
3.3	Bestimmung der ¹³ C-Abschirmparameter von Glycin mittels			
	¹³ C-CP-MAS-NMR	26		
3.4	Untersuchung der Na ⁺ -Populationen im dehydratisierten Zeolith			
	Na-Y mittels ²³ Na-MAS-NMR	28		
4.	Literatur	29		
- ۱۸ م	ng 1	20		
Anna A mh		3U 21		
Anna	ng 2	31 22		
Anna	Annang 3 3			

1. Einführung zu Kernspin-Wechselwirkungen in Festkörpern

1.1 Übersicht zu Kernspin-Wechselwirkungen

- Positionen und Formen von Festkörper-NMR-Signalen (FKNMR) werden durch folgende Kernspin-Wechselwirkungen bestimmt:

$$\boldsymbol{H}_{\text{total}} = \boldsymbol{H}_0 + \boldsymbol{H}_{\text{Q}} + \boldsymbol{H}_{\text{K}} + \boldsymbol{H}_{\text{DI}} + \boldsymbol{H}_{\text{CSA}} + \boldsymbol{H}_{\text{J}}$$
(1)

Hamilton-	Beschreibung	Frequenz /
Operator		Signalverbreiterung
H_0	Zeeman-Wechselwirkung des	$\leq 10^9 \mathrm{s}^{-1}$
	magnetischen Kern-Dipol-Momentes μ_i	
	mit dem Magnetfeld B_0	
H_{Q}	Wechselwirkung des elektrischen Kern-	$\leq 10^7 \text{ s}^{-1}$
	Quadrupol-Momentes von Kernen mit	
	$I > \frac{1}{2}$ mit dem elektrischen Feldgradien-	
	ten am Kernort	
$H_{\rm K}$	Knight-Verschiebung durch	$\leq 10^5 \text{ s}^{-1}$
	Wechselwirkung der resonanten Kerne	
	mit ungepaarten Elektronen	
$H_{ m DI}$	direkte Wechselwirkung des	$\leq 5 \times 10^4 \mathrm{s}^{-1}$
	magnetischen Dipol-Momentes des	
	resonanten Kernes mit den magnetischen	
	Dipol-Momenten benachbarter Kerne	
$H_{\rm CSA}$	anisotrope chemische Abschirmung	$\leq 5 \times 10^3 \mathrm{s}^{-1}$
	σ aufgrund der Abschirmung des B_0 -	
	Feldes durch Elektronenhüllen	
$H_{ m J}$	J-Kopplung, skalare Wechselwirkung	$\leq 5 \times 10^2 \mathrm{s}^{-1}$
	oder indirekte Kernspin-Kernspin-	
	Wechselwirkung, vermittelt über	
	Bindungselektronen	

1.2 Zeeman-Wechselwirkung

- Hamilton-Operator H_0 der Zeeman-Wechselwirkung für Kerne mit Spin *I* und dem gyromagnetischen Verhältnis γ_1 in einem äußeren Magnetfeld B_0 :

$$\boldsymbol{H}_{0} = -\boldsymbol{\gamma}_{1} \cdot \boldsymbol{\hbar} \cdot \boldsymbol{I} \cdot \boldsymbol{B}_{0} \tag{2}$$

- Aufspaltung der Kernspin-Energieniveaus entsprechend der magnetischen Quantenzahlen *m* (unten links)
- die Übergangsfrequenz zwischen diesen Energieniveaus entspricht der Larmor-Frequenz v₀:

$$\boldsymbol{v}_0 = \frac{\boldsymbol{\gamma}_I}{2\pi} \; \boldsymbol{B}_0 \tag{3}$$

 im klassischen Bild ist die Larmor-Frequenz die Umlauffrequenz der magnetischen Dipol-Momente μ_i (bzw. μ) auf einem Kegelmantel, ausgerichtet in B₀-Richtung (unten rechts)

1.2 Quadrupol-Wechselwirkung

- Kerne mit Spin $I > \frac{1}{2}$ besitzen eine elliptische Ladungsverteilung

diese Ladungsverteilung bewirkt ein elektrisches Kern-Quadrupol-Moment
 eQ (proportional zur quadrupolaren Anisotropie QA in obiger Abbildung)

Kern	2 H	²³ Na	²⁷ Al	⁴¹ Ca	²⁴¹ Pu
Spin I	1	3/2	5/2	7/2	5/2
eQ	e × 0,29	e × 10,40	e × 14,66	-е × 6,70	e × 560

- bei Spin I = 3/2, 5/2, 7/2 etc. gibt es neben dem Zentral-Übergang (-1/2 \leftrightarrow

+1/2) zusätzliche Satelliten-Übergänge (z.B. -3/2 \leftrightarrow -1/2, +1/2 \leftrightarrow +3/2 etc.)

- Signal des Zentral-Übergangs erscheint im Signal-Schwerpunkt nahe ω_0
- Satelliten-Signale sind um $\pm 2\Delta$ zum Zentral-Übergang verschoben
- Δ hängt von Quadrupol-Frequenz ω_Q = 2πν_Q und dem Winkel β zwischen der z-Richtung des elektrischen Feldgradienten V_{zz} = eq am Kernort (Nahstrukturparameter) und der B₀-Richtung ab

 relative Signalintensitäten A des Zentral-Übergangs (CT) und der Satelliten-Übergänge (ST):

Übergang:	ST	ST	ST	ST	СТ	ST	ST	ST	ST
I = 1				1/2		1/2			
I = 3/2			3/10		4/10		3/10		
I = 2		2/10		3/10		3/10		2/10	
I = 5/2	5/35	i	8/35		9/35		8/35		5/35

$$A(\text{CT,ST}) = \frac{3}{2} \frac{I(I+1) - m(m-1)}{I(I+1)(2I+1)}$$
(4)

(Kerne mit Spin I = 1, 2, 3 etc. haben keinen Zentral-Übergang)

- Hamilton-Operator H_Q der Quadrupol-Wechselwirkung:

$$\boldsymbol{H}_{\mathrm{Q}} = \frac{e^2 q Q}{4I(2I-1)} [3I_{\mathrm{z}}^2 - I(I+1)] \left(\frac{3\cos^2 \beta - 1}{2} + \frac{\eta_Q}{2} \sin^2 \beta \cos 2\alpha \right)$$
(5)

mit Asymmetrie-Parameter η_Q und Komponenten des elektrischen Feldgradienten $V(V_{zz} \ge V_{yy} \ge V_{xx})$:

$$\eta_{Q} = \frac{V_{xx} - V_{yy}}{V_{zz}} \tag{6}$$

und den Euler-Winkeln α und β zwischen den Hauptachsen des Tensors des elektrischen Feldgradienten und des Laborkoordinatensystems

- die Quadrupol-Kopplungskonstante C_q beschreibt die Stärke der Quadrupol-Wechselwirkung (proportional zum Produkt von eQ und e $q = V_{zz}$):

$$C_{\rm q} = \frac{e^2 q Q}{h} \tag{7}$$

- Zusammenhang von C_q und Quadrupol-Frequenz $\omega_Q = 2\pi v_Q$:

$$v_{\rm Q} = \omega_{\rm Q} / 2\pi = \frac{3e^2 qQ}{2I(2I-1)h} = \frac{3C_q}{2I(2I-1)}$$
(8)

Frequenzverteilungsfunktion (Signalform) des Zentral-Übergangs (−1/2 ↔ +1/2) von Quadrupol-Kernen [Freude1]:

$$\omega_{-1/2,+1/2} = -\frac{\omega_0^2}{6\omega_0} \left[I(I+1) - \frac{3}{4} \right] (A\cos^4\beta + B\cos^2\beta + C)$$
(9)

mit

$$A = -\frac{27}{8} - \frac{9}{4}\eta \cos 2\alpha - \frac{3}{8}\eta^2 \cos^2 2\alpha$$
(10)

$$B = +\frac{15}{4} - \frac{1}{2}\eta^2 + 2\eta\cos 2\alpha + \frac{3}{4}\eta^2\cos^2 2\alpha$$
(11)

$$C = -\frac{3}{8} + \frac{1}{3}\eta^2 + \frac{1}{4}\eta\cos 2\alpha - \frac{3}{8}\eta^2\cos^2 2\alpha$$
(12)

- Signalformen von Zentral-Übergängen für unterschiedliche Asymmetrie-Parameter η_Q (hier η) in Einheiten von $(\nu - \nu_0) / X$ mit:

zu MAS, d.h. Probenrotation um den magischen Winkel, siehe Abschnitt 2.3

- die Signalschwerpunkte des Zentral-Übergangs und der Satelliten-Übergänge sind um die Frequenzdifferenz Δv verschoben [Freude1]:

$$\Delta \nu = -\frac{\nu_{Q}^{2}}{30\nu_{0}}9 \cdot \left(1 + \frac{\eta^{2}}{3}\right)$$
(14)

 zusätzlich zeigt der Signalschwerpunkt des Zentral-Übergangs eine feldabhängige (B₀-Feld) Resonanzverschiebung v_{QS} (quadrupolare Verschiebung, *quadrupolar shift*):

$$v_{\rm QS} = -\frac{1}{30} \frac{v_Q^2}{v_0} \left[I(I+1) - \frac{3}{4} \right] (1 + \frac{1}{3}\eta^2)$$
(15)

Vier Methoden zur Bestimmung der Quadrupol-Wechselwirkung

- Bei schwacher Quadrupol-Wechselwirkung kann der Abstand der Singularitäten der Satelliten-Übergänge ausgewertet werden (Seite 4, unten).
- 2) Alternativ kann die Differenz Δv der Signalschwerpunkte der Satellitenund Zentral-Übergänge gemessen und ausgewertet werden (Gl. (14)).
- Im Falle von starker Quadrupol-Wechselwirkung kann eine Computer-Simulation der Signalform des Zentralüberganges durchgeführt werden (Seite 6, unten).
- 4) Bei sehr starker Quadrupol-Wechselwirkung kann die feldabhängige quadrupolare Verschiebung v_{QS} des Signals des Zentralübergangs bei verschiedenen B_0 -Feldern gemessen und ausgewertet werden (Gl. (15)).

Nutzen der gewonnenen spektroskopischen Daten

- Quadrupol-Frequenz v_Q und Asymmetrie-Parameter η_Q spiegeln die Ladungsverteilung und Symmetrie (elektrischer Feldgradient) in der Nahstruktur der resonanten Quadrupol-Kerne wider (siehe Abschnitt 3.4)
- ermöglichen Unterscheidung von Atomen auf verschiedenen kristallographischen Positionen und/oder in amorphen Phasen

1.4 Knight-Verschiebung

- Resonanzverschiebung (Knight-Verschiebung/-*shift*) der NMR-Signale von Kernen in direkter Nachbarschaft von ungepaarten Elektronen
- wird auch als Fermi-Kontakt-Wechselwirkung dieser Kerne mit paramagnetischen Zentren bezeichnet
- Knight-Shift K (in ppm) oder Δv (in Frequenzeinheiten) [Fraiss1]:

$$K = \frac{\Delta \nu}{\nu_0} = \frac{a \cdot \chi_P}{\gamma_e \gamma_n \hbar}$$
(16)

mit Pauli-Suszeptibilität der ungepaarten Elektronen χ_P und den gyromagnetischen Verhältnissen der Elektronen γ_e und des Kerns γ_n

- Parameter *a* hängt von der Stärke der Hyperfein-Wechselwirkung der Kerne mit den ungepaarten Elektronen ab
- Hamilton-Operator H_K für die Knight-Verschiebung des Signals eines Kerns mit Spin *I*:

$$\boldsymbol{H}_{\mathrm{K}} = \boldsymbol{\gamma}_{\mathrm{n}} \cdot \boldsymbol{\hbar} \cdot \boldsymbol{K} \cdot \boldsymbol{I} \cdot \boldsymbol{B}_{0} \tag{17}$$

- die Knight-*shift K* ist oft stärker als die Wirkung der Abschirmung σ bzw. der chemischen Verschiebung und hat meist ein positives Vorzeichen:

$$\omega = \omega_0 (1 - \sigma + K) \tag{18}$$

 somit kann eine große positive Resonanzverschiebung ein Hinweis f
ür das Vorliegen von metallischen Clustern mit ungepaarten Elektronen in der direkten Umgebung resonanter Kerne sein

Experimenteller Beweis für die Knight-Verschiebung

- Überprüfung der Temperaturabhängigkeit von K mittels Korringa-Gleichung:

$$K^{2} = \frac{\hbar}{4\pi k_{B}} \left(\frac{\gamma_{e}}{\gamma_{n}}\right)^{2} S \frac{1}{T_{1}T}$$
(19)

mit Spin-Gitter-Relaxationszeit T_1 , Temperatur T und Skalierungsfaktor S

Nutzen der gewonnenen spektroskopischen Daten

- Nachweis von ungepaarten Elektronen in der Umgebung der resonanten Kerne und deren Lokalisierung (siehe Anhang 1)

1.5 Dipol-Dipol-Wechselwirkung

- Wechselwirkung des resonanten Kerns *I* mit den magnetischen Dipol-Momenten benachbarter Kerne (Kerne *S*)
- Dipol-Momente von Nachbarkernen erzeugen schwache Magnetfelder, die das *B*₀-Feld überlagern (siehe unten)

- Dipol-Dipol-Wechselwirkungen hängen vom Kern-Kern-Abstand r_{IS} und dem Winkel β_{IS} des Kern-Kern-Verbindungsvektors zur B_0 -Feldrichtung ab
- Hamilton-Operator für die homonukleare (gleichartige Kerne *I* mit γ₁) und die heteronukleare (unterschiedliche Kerne *I* und *S* mit γ₁ ≠ γ_S) Dipol-Dipol-Wechselwirkung *H*_{DLII} bzw. *H*_{DLIS}:

$$\boldsymbol{H}_{\text{DI,II}} = \gamma_{I} \gamma_{S} \hbar^{2} \frac{\mu_{0}}{4\pi} \frac{1}{r_{IS}^{3}} \left(\frac{1 - 3\cos^{2}\beta_{IS}}{2} \right) (3I_{z} \cdot S_{z} - \boldsymbol{I} \cdot \boldsymbol{S})$$
(20)

$$\boldsymbol{H}_{\text{DI,IS}} = \gamma_{I} \gamma_{S} \hbar^{2} \frac{\mu_{0}}{4\pi} \frac{1}{r_{IS}^{3}} \left(\frac{1 - 3\cos^{2}\beta_{IS}}{2} \right) \boldsymbol{I}_{z} \cdot \boldsymbol{S}_{z}$$
(21)

- alternative Schreibweise:

$$\boldsymbol{H}_{\mathrm{DI}} = \hbar \cdot \boldsymbol{\omega}_{\mathrm{DI}}(A+B) \tag{22}$$

mit

$$\omega_{\rm DI} = (\gamma_i \gamma_k \hbar \frac{\mu_0}{4\pi}) / r_{\rm ik}^3$$
(23)

$$A = (1 - 3\cos^2 \beta_{ik}) I_{zi} I_{zk}$$
⁽²⁴⁾

$$B = -\frac{1}{4} (1 - 3\cos^2 \beta_{ik}) [I_{+i}I_{-k} + I_{-i}I_{+k}]$$
(25)

Term A: Verteilung der Larmor-Frequenz aufgrund unterschiedlicher lokaler Magnetfelder am Ort der resonanten Kerne

Term B: Flip-Flop-Term, der den Polarisationstransfer (Spin-Diffusion, T₂-Relaxation) zwischen benachbarten Spins beschreibt

- Spektren von dipolar wechselwirkenden Kern-Paaren mit Spin I = 1/2bestehen aus zwei gespiegelten Teilspektren, da der jeweilige Nachbar-Kern *S* des resonanten Kerns *I* zwei mögliche Quantisierungszustände $m_{\rm S} = \pm 1/2$ hat

bei polykristallinen Proben überstreicht der Winkel β_{ik} alle Werte von 0° bis 90° und es entsteht ein Pulverspektrum (siehe oben, rechts), auch Pake-Dublett genannt (siehe auch Anhang 2 und Abschnitt 3.2)

Nutzen der gewonnenen spektroskopischen Daten

 Auswertung der Stärke der dipolaren Wechselwirkung ermöglicht die Bestimmung von Kern-Kern-Abständen in kristallinen als auch amorphen Feststoffen

1.6 Anisotrope chemische Abschirmung bzw. Verschiebung

- Abschirmung des B_0 -Feldes durch die den Kern umgebende Elektronenhülle
- Abschirmung σ ist meist anisotrop, d.h. ist Tensor mit $|\sigma_{zz}| \ge |\sigma_{yy}| \ge |\sigma_{xx}|$

- Hamilton-Operator H_{CSA} der anisotropen chemischen Abschirmung:

$$\boldsymbol{H}_{\rm CSA} = \boldsymbol{\gamma} \cdot \boldsymbol{\hbar} \cdot \boldsymbol{I} \cdot \boldsymbol{\sigma}_{\alpha\beta} \cdot \boldsymbol{B}_{\boldsymbol{0}} \tag{26}$$

- Frequenzverteilungsfunktion (Signalform) verursacht durch anisotrope chemische Abschirmung:

$$\omega = \omega_0 \left[(1 - \sigma_{iso}) - \Delta \sigma \left(\frac{3\cos^2 \beta - 1}{2} + \frac{\eta_{CSA}}{2} \sin^2 \beta \cos 2\alpha \right) \right]$$
(27)

mit isotroper Abschirmung σ_{iso} (bzw. - δ_{iso}):

$$\sigma_{\rm iso} = \frac{1}{3} (\sigma_{\rm xx} + \sigma_{\rm yy} + \sigma_{\rm zz})$$
(28)

Anisotropie $\Delta \sigma$: $\Delta \sigma = (\sigma_{zz} - \sigma_{iso})$

und Asymmetrie-Parameter η_{CSA} :

$$\eta_{\rm CSA} = \frac{(\sigma_{yy} - \sigma_{xx})}{\Delta\sigma} \tag{30}$$

- in Flüssigkeiten bewirkt die schnelle Umorientierung der Moleküle eine Ausmittlung der anisotropen Terme in Gl. (27) zu:

$$\omega = \omega_0 (1 - \sigma_{\rm iso}) \tag{31}$$

- in polykristalline Festkörperproben überstreichen die Euler-Winkel α und β in Gl. (27) alle Werte von 0° bis 90° und liefern folgende Signalformen:

(29)

allgemeiner Fall, $\eta_{CSA} \neq 0$ axiale Symmetrie, $\eta_{CSA} = 0$

- bei axialer Symmetrie ($\eta_{CSA} = 0$) ist $\sigma_{xx} = \sigma_{yy}$ und es werden oft folgende Bezeichnung der Hauptachsenkomponenten des Abschirmtensors verwendet:

$$\sigma_{\perp} = \sigma_{zz} \tag{32}$$

$$\sigma_{||} = \sigma_{xx} = \sigma_{yy} \tag{33}$$

Nutzen der gewonnenen spektroskopischen Daten

- die Größe der Anisotropie der chemischen Abschirmung liefert Informationen zur Natur und räumlichen Anordnung von Nachbaratomen (siehe Anhang 3)
- unterstützen die Zuordnung von Signalen in FKNMR-Spektren (siehe Abschnitt 3.3)

1.7 J-Kopplung bzw. indirekte Kernspin-Kernspin-Wechselwirkung

- indirekte Kernspin-Kernspin-Wechselwirkung (J-Kopplung), die über Bindungselektronen vermittelt wird
- ist eine skalare Größe, die unabhängig von Stärke des B_0 -Feldes ist
- Hamilton-Operator H_J mit skalarer Größe J_{ij} , die die Wechselwirkung zwischen den wechselwirkenden Kernen i und j beschreibt:

$$\boldsymbol{H}_{\mathrm{J}} = \boldsymbol{I}_{\mathrm{i}} \cdot \boldsymbol{J}_{\mathrm{ij}} \cdot \boldsymbol{S}_{\mathrm{j}} \tag{34}$$

- die *J*-Kopplung bewirkt Signalaufspaltungen von bis zu ca. 5×10^2 s⁻¹, die aufgrund der großen Signalbreiten in FKNMR-Spektren meist überdeckt werden

- 2. Messtechniken der Festkörper-NMR-Spektroskopie
- 2.1 Sättigungsfreie Impulsanregung großer Spektrenbereiche

Korrekte Pulsanregung

Hochfrequenz-Impulse (HF) mit der magnetischen Feldstärke B₁ bewirken eine Drehung der Magnetisierung M mit der Nutationsfrequenz ω₁ = γ·B₁ aus der z-Richtung (B₀-Richtung) in die x-y-Ebene:

- in Abhängigkeit von der B_1 -Feldstärke (Impulsleistung bzw. Sendeleistung) kann $\omega_1/2\pi$ bis zu 500 kHz betragen
- Impulslänge t_p für Nutationswinkel $\alpha = \pi/2, \pi \dots$:

$$t_{\rm p} = \frac{\alpha}{\omega_{\rm I}} = \frac{\alpha}{\gamma B_{\rm I}} \tag{35}$$

- Abhängigkeit der Anregungsbreite Δv (spektraler Anregungsbereich) von der Einstrahlungsdauer t_p eines HF-Impulses:

$$\Delta v \approx 1/(\pi t_{\rm p}) \tag{36}$$

- Spektrenbereich z.B. von 3 MHz (bei ²⁷Al-FKNMR) erfordert $t_p \le 0,1 \text{ } \mu\text{s}!$

Vermeidung von Sättigung

- die Wiederholzeit von NMR-Experimenten (t_{rep}: *repetition time*) bei Anregung mit π/2-Impulsen sollte *ca*. 5 × T₁ betragen (T₁: Spin-Gitter-Relaxationszeit)
- anderenfalls tritt eine S\u00e4ttigung des Spin-Systems (unvollst\u00e4ndige Relaxation) und ein Verlust an Signalintensit\u00e4t auf

- bei sehr langer T_1 -Zeit kann mit kürzeren Anregungsimpulsen bzw.

Nutationswinkeln (Ernst-Winkel) α_{opt} angeregt werden (ohne Sättigung):

$$\cos \alpha_{\rm opt} = \exp\{-t_{\rm rep}/T_1\}$$
(37)

- Beispiele für Ernst-Winkel α_{opt} für ein Kernspin-System mit einer T_1 -Zeit von 5 s und kürzeren Experiment-Wiederholzeiten t_{rep} :

t _{rep}	7,5 s	5,0 s	2,5 s	
$\overline{\alpha_{\text{opt}}}$	77°	68°	53°	

2.2 Signalverstärkung durch Kreuzpolarisation (CP)

- Verstärkung der Signalintensitäten von Kernen S mit geringer natürlicher
 Häufigkeit und kleinem gyromagnetischen Verhältnis (S: ¹³C, ¹⁵N, ²⁹Si etc.)
- Nutzung des hohen Besetzungszahlunterschieds $\Delta N_{\rm I}$ der Kernspin-Energieniveaus von dipolar gekoppelten ¹H-Kernen *I* zur Erhöhung von $\Delta N_{\rm S}$ durch Polarisationstransfer von *I*- zu *S*-Spins (CP: *cross polarization*):

$$\frac{\Delta N_I}{\Delta N_S} = \frac{\gamma_I}{\gamma_S} \tag{38}$$

 Voraussetzung ist eine Angleichung der Energieniveaus f
ür beide dipolar gekoppelten Spin-Systeme *I* und *S* in den Magnetfeldkomponenten *B*_{1,I} und *B*_{1,S} von HF-Impulsen (*contact pulses* bzw. Kontaktimpulse)

 ein π/2-Impuls erzeugt *I*-Polarisation und die Kontaktpulse ermöglichen einen Polarisationstransfer zu benachbarten *S*-Spins, wenn die Hartmann-Hahn-Bedingung erfüllt ist:

$$\gamma_{\rm I} B_{1,\rm I} = \gamma_{\rm S} B_{1,\rm S} \tag{39}$$

 während der Detektion der NMR-Signale der S-Spins wird im Kanal der I-Spins ein langer Entkoppelimpuls eingestrahlt, der die signalverbreiternde dipolare I-S-Wechselwirkungen reduziert

Einflussgrößen des CP-Experiments

- die durch die Kreuzpolarisation entstehende Polarisierung $M_{\rm S}(t)$ der S-Spins hängt von der Dauer *t* der Kontaktimpulse ab [Michel1]:

Einflussgrößen sind die Relaxationszeit T_{1ρ,I} der *I*-Spins im B_{1,I}-Feld (gestrichelte Kurve), die Kreuzpolarisationsrate T_{IS}:

$$\frac{1}{T_{IS}} = \frac{3}{2} M_{2,IS} \left(\frac{2\pi}{5M_{2,II}} \right)^{1/2}$$
(40)

die zweiten Momente $M_{2,IS}$ und $M_{2,II}$ der dipolaren *I,S*- und *I,I*-Wechselwirkung (Stärke dieser Dipol-Dipol-Wechselwirkungen) und der Parameter λ :

$$\lambda = 1 + \frac{T_{IS}}{T_{1\rho,S}} - \frac{T_{IS}}{T_{1\rho,I}}$$
(41)

- das Optimum für $M_s(t)$ wird nach der Kontaktzeit t_m erreicht:

$$t_{\rm m} = \frac{T_{IS} \cdot T_{1\rho,I}}{T_{1\rho,I} - T_{IS}} \cdot \ln\left(\frac{T_{1\rho,I}}{T_{IS}}\right) \tag{42}$$

Hinweis

- wegen der zahlreichen Einflussgrößen auf $M_{\rm S}(t)$ wird optimale Länge der Kontaktpulse (1 bis 6 ms) meist experimentell ermittelt
- da Parameter in Gl. (40) bis (42) oft nicht bekannt sind, ist keine exakte quantitative Auswertung und Diskussion der Signalintensitäten möglich

2.3 Schnelle Probenrotation um den magischen Winkel (MAS)

- Überlappung breiter FKNMR-Signale erfordert für deren Trennung und Auswertung die Anwendung von Techniken der Signalverschmälerung
- Ausmittelung von Kernspin-Wechselwirkungen durch schnelle Probenrotation (v_{rot} von bis zu 60 kHz) um Achse im Winkel von $\beta = 54,7^{\circ}$ zur B_0 -Richtung (magischer Winkel, MAS: *magic angle spinning*)
- hierbei wird Geometrieterm $(3\cos^2\beta 1)$ vieler Frequenzverteilungsfunktionen ausgemittelt

- Hamilton-Operator z.B. der dipolaren *I*,*S*-Wechselwirkung wird bei MAS zu:

$$H_{\text{DI, IS}}(t) = \frac{1}{2} \gamma_{i} \cdot \gamma_{j} \cdot \hbar^{2} \cdot r_{ij}^{-3} (\boldsymbol{I}_{i} \cdot \boldsymbol{S}_{j} - 3\boldsymbol{I}_{iz} \cdot \boldsymbol{S}_{jz}) \times$$

$$\{ (1/2) (3\cos^{2}\beta - 1) \cdot (3\cos^{2}\beta'_{ij} - 1) \qquad \text{Zentrallinie}$$

$$+ (3/2) \sin^{2}\beta \cdot \sin^{2}\beta'_{ij} \cdot \cos(2\pi v_{\text{rot}} \cdot t + \boldsymbol{\Phi}_{0ij}) \qquad \text{Seitenbänder} \qquad (43)$$

$$+ (3/2) \sin^{2}\beta \cdot \sin^{2}\beta'_{ij} \cdot \cos^{2}(2\pi v_{\text{rot}} \cdot t + \boldsymbol{\Phi}_{0ij}) \qquad \text{Seitenbänder} \qquad (43)$$

- MAS-NMR-Spektren bestehen daher aus der Zentrallinie und den um $\pm v_{rot}$ verschobenen Rotationsseitenbändern (*spinning sidebands*)

Rotation um den magischen Winkel mittels Vielimpulsgruppen

- bei sehr starker homonuklearer Dipol-Dipol-Wechselwirkung kann es vorkommen, dass MAS alleine keine ausreichende Signalverschmälerung ermöglicht
- hilfreich kann die Einstrahlung einer Vielimpulsgruppe (siehe unten) sein,
 z.B. in Kombination mit MAS (CRAMPS: *Combined Rotation And Multipulse Sequence*)
- mit der Impulsgruppe WAHUHA wird die Magnetisierung mittels π/2-Impulsen f
 ür gleiche Zeiten von der z-Richtung (001) in die x- (100), y- (010) und wieder zur
 ück in die *z*-Richtung (001) gedreht

 dies entspricht einer Rotation der Magnetisierung um die (111)-Achse, die im magischen Winkel von 54,7° zur z-Richtung (001) steht [Grimmer 1]

- die Impulsgruppe besteht aus einer Wiederholung von *n* Zyklen (*cycle*), in denen jeweils ein Datenpunkt des Induktionsabfalls gemessen wird (*aqu.*)

Einschränkung der Wirkung der MAS bei thermischer Bewegung

- eine thermische Bewegung (beschrieben mittel Korrelationszeit τ_c) der resonanten Kerne beeinträchtigt die Wirkung der MAS und führt zu einer Restlinienbreite $\Delta v_{1/2}^{MAS}$ der Zentrallinie von [Andrew1]:

$$\Delta v_{1/2}^{\text{MAS}} = \frac{1}{6\pi} M_{2,IS} \left[\frac{2\tau_c}{1 + (\omega_{rot}\tau_c)^2} + \frac{\tau_c}{1 + 4(\omega_{rot}\tau_c)^2} \right]$$
(44)

- der Einfluss der thermischen Bewegung auf das gesamte MAS-NMR-Spektrum kann anhand des Induktionsabfalls $G^{MAS}(t)$ berechnet werden, mit nachfolgender Fourier-Transformation in den Frequenzbereich [Pfeifer1]:

$$G^{\text{MAS}}(t) = \exp\{-(M_{2,\text{IS}}/3)[2J(\omega_{\text{rot}}, t) + J(2\omega_{\text{rot}}, t)]\}$$
(45)

mit

$$J(\omega_{\text{rot}}, t) = \frac{\tau_c t}{1 + (\omega_{rot} \tau_c)^2} + \frac{\tau_c^2 ((\omega_{rot} \tau_c)^2 - 1)}{(1 + (\omega_{rot} \tau_c)^2)^2} (1 - e^{-t/\tau_c} \cos(\omega_{rot} t)) - \frac{2\omega_{rot} \tau_c^3}{(1 + (\omega_{rot} \tau_c)^2)^2} e^{-t/\tau_c} \sin(\omega_{rot} t)$$
(46)

Beispiel für Signalverbreiterung durch thermische Bewegung

- berechnete ¹H-MAS-NMR-Spektren von strukturellen OH-Gruppen (Si(OH)Al) im Zeolith H-Y (dipolare ¹H-²⁷Al-Wechselwirkung von $M_{2,IS} = 0.7 \times 10^{-8} \text{ T}^2$) für $v_{rot} = 3 \text{ kHz}$ und $\tau_c = 10 \text{ }\mu\text{s}$ bis 10 ms:

Hinweis

- eine gute Ausmittelung von Festkörper-Wechselwirkungen mittels MAS ist nur bei τ_c >> 1/ω_{rot} bzw. ω_{rot} >> 1/τ_c möglich
- deshalb sind hohe Proben rotationsfrequenz und/oder tiefe Temperatur (großes τ_c) hilfreich

Einschränkung der Wirkung der MAS bei Quadrupol-Kernen $(S > \frac{1}{2})$

 die Wirkung der MAS bei Quadrupol-Kernen kann durch das zweite Moment *M*_{2,Q}^{MAS} beschrieben werden, das proportional zur Stärke der nicht ausgemittelten Restwechselwirkung ist [Freude1]:

$$M_{2,Q}^{MAS} = \frac{1}{4} v_{QS}^2$$
 (für v_{QS} siehe Gl. (15)) (47)

 ohne MAS, d.h. statisch gemessen, ist das zweite Moment der Quadrupol-Wechselwirkung:

$$M_{2,Q}^{\text{statisch}} = \frac{23}{7} v_{QS}^2$$
(48)

 - aus Gl. (47) und (48) folgt die durch MAS erreichbare Reduzierung der Breite (proportional zur Quadratwurzel von M₂) der Signale von Zentralübergängen (vergleiche Spektren auf S. 6, unten):

$$\sqrt{\frac{M_{2,Q}^{MAS}}{M_{2,Q}^{static}}} = \sqrt{\frac{7}{92}} = \frac{1}{3.6} \approx \frac{1}{4}$$
(49)

2.4 Vollständige Ausmittelung der quadrupolaren Wechselwirkung mittels Probenrotation um zwei Achsen (DOR)

bei Verwendung des Quanten-Zustands *p* (*quantum level*) mit *p*/2 ↔ –*p*/2 anstelle von *m* ↔ –*m* ist die Frequenzverteilungsfunktion *v*_{p/2,-p/2} für den Zentralübergang unter Anwendung von MAS [Freude1]:

$$\begin{aligned}
\nu_{p/2,-p/2} &= \nu_{p/2,-p/2}^{iso} + \nu_{p/2,-p/2}^{aniso} \\
&= \frac{p \nu_{\varrho}^{2} (3 + \eta^{2})}{90 \nu_{0}} \Big\{ I(I+1) - \frac{3}{4} p^{2} \Big\} - \Big\{ \frac{p \nu_{\varrho}^{2}}{12960 \nu_{0}} \Big\} \\
&\times \Big\{ (18 + \eta^{2}) d_{0,0}^{(4)} + \sqrt{360} \cdot \eta \cdot d_{2,0}^{(4)} \cdot \cos 2\alpha + \sqrt{70} \cdot \eta^{2} \cdot d_{4,0}^{(4)} \cdot \cos 4\alpha \Big\} \\
&\times \Big\{ 36I(I+1) - 17 p^{2} - 10 \Big\} \Big\{ (-\frac{9}{28}) \cdot (35 \cos^{4} \beta - 30 \cos^{2} \beta + 3) \Big\} \end{aligned}$$
(50)

- Ausmittlung des anisotropen Terms $v_{p/2,-p/2}^{aniso}$, wenn $\beta = 30,56^{\circ}$ oder 70,12° $(35\cos^4\beta - 30\cos^2\beta + 3 = 0)$, d.h. eine Probenrotation um eine zweite Achse in einem dieser Winkel β durchgeführt wird (DOR: *double oriented rotation*).

- der kleine innerer Rotor, der die Probe enthält, kann mit v_{rot} ca. 6 – 8 kHz rotieren, während der große äußere Rotor meist nicht mehr als 2 kHz erreicht

Einschränkungen der DOR-Technik

- schlechtes Signal/Rausch-Verhältnis wegen schlechtem Spulenfüllfaktor
- viele Rotationsseitenbänder wegen kleinem v_{rot} des äußeren Rotors

2.5 Vollständige Ausmittlung der quadrupolaren Wechselwirkung mit Hilfe von Mehrquanten-NMR-Experimenten (MQ)

- Kombination von MAS-Technik mit Impulsgruppe (Echo-Sequenz) zur Eliminierung der Restsignalbreite der Zentralübergänge von Quadrupol-Kernen
- Anregung von Mehrquanten-Übergängen m₁ (MQ: multiple-quantum) mit leistungsstarken Impulsen, Mehrquanten-Entwicklungszeit t₁ und Signal-Detektion während der Zeitperiode t₂ nach Konvertierung in Einquanten-Übergänge m₂ mittels schwachen Impulsen [Frydman 1]

 Bedingungen f
ür t₁ und t₂ in den oben dargestellten Impuls-Sequenzen [Frydman1]:

$$t_1 C_4(m_1) + t_2 C_4(m_2) = 0$$
(51)

mit $C_4(m_1) = -42$ und $C_4(m_2) = 54$ für Kerne mit Spin I = 3/2 sowie $C_4(m_1) = -300$ und $C_4(m_2) = 228$ für Kerne mit Spin I = 5/2

- Aufnahme der Echo-Signale $G(t_1, t_2)$ zum Zeitpunkt $t_{2,echo}$ entsprechend:

$$t_{2,\text{echo}} = \left[|C_4(m_1)| / C_4(1/2) \right] t_1$$
(52)

- zweifache Fourier-Transformation (FT) der Echo-Signale G(t₁,t₂) als Funktion der Mehrquanten-Entwicklungszeit t₁ liefert zweidimensionales (2D)
 MQMAS-NMR-Spektrum
- liefert quadrupolar verbreiterte MAS-NMR-Signale entlang der δ_2 -Achse (FT von t_2) und vollständig isotrope Signale (Quadrupol-Wechselwirkung vollständig ausgemittelt) entlang der δ_1 -Achse (FT von t_1).

Einschränkungen der MQMAS-NMR-Technik

- MQ-Impulssequenzen sind nur für begrenzte Bereiche von C_q -Werten optimierbar
- Signalintensitäten der 2D-MQMAS-NMR-Spektren sind nicht quantitativ auswertbar

Beispiel für Anwendung der MQMAS-NMR-Technik

- 2D-MQMAS-NMR-Spektrum von ¹⁷O-Atomen in den Si¹⁷OSi- (80%, $C_Q = 5,3$ MHz) und Si¹⁷OAl-Brücken (20%, $C_Q = 3,5$ MHz) eines kristallinen Alumosilikats [Freude 1]

3. Anwendungsbeispiele

3.1 Bestimmung des Gerüst-*n*_{Si}/*n*_{Al}-Verhältnisses von kristallinen Alumosilikaten mittels ²⁹Si-HPDEC-MAS-NMR

Die isotrope chemische Verschiebung δ_{Si} von ²⁹Si-Atomen (²⁹Si: Spin *I* = 1/2) in kristallinen Alumosilikaten hängt in charakteristischer Weise von der Art und Zahl der Atome auf den direkt benachbarten T-Positionen ab (siehe unten).

Daher kann mit Hilfe der relativen Intensitäten $I_{Si(nAl)}$ der ²⁹Si-MAS-NMR-Signale der Si(*n*Al)-Spezies in diesen kristallinen Feststoffen das Gerüst- n_{Si}/n_{Al} -Verhältnis berechnet werden:

$$n_{\rm Si}/n_{\rm Al} = \sum_{n=0}^{4} I_{Si(nAl)} / \sum_{n=0}^{4} 0.25 \cdot n \cdot I_{Si(nAl)}$$
(53)

Diese Methode erlaubt die Veränderung des Gerüst- n_{Si}/n_{Al} -Verhältnisses eines kristallinen Alumosilikats nach dessen Dealuminierung zu bestimmen.

Zur Untersuchung des Aluminiumgehaltes im Gerüst eines kristallinen Alumosilikats wurde eine ²⁹Si-MAS-NMR-Messung bei $B_0 = 9,4$ T bzw. $\nu_0 =$ 79,4 MHz, mit Ein-Impuls-Anregung ($\pi/2$), ¹H-Entkopplung (HPDEC) und v_{rot} = 4 kHz durchgeführt (File S4000Si21, EXPNO 1).

Zur Auswertung wurden das ²⁹Si-HPDEC-MAS-NMR-Spektrum des kristallinen Alumosilikats in seine Einzelkomponenten zerlegt und die relativen Intensitäten $I_{Si(nAl)}$ bestimmt. Die Berechnung des Gerüst- n_{Si}/n_{Al} -Verhältnisses mit Hilfe von Gl. (53) lieferte den Wert von $n_{Si}/n_{Al} = 2,73$.

3.2 Bestimmung des H-H-Abstands von Kristallwasser im Gips mittels ¹H-Festkörper-NMR

Gipskristalle (CaSO₄·2H₂O) besitzen fest gebundene und isolierte Wassermoleküle. Diese Wassermoleküle erzeugen im statisch aufgenommenen ¹H-NMR-Spektrum ein Pake-Dublett (¹H: Spin I = 1/2). Aus dem Abstand der Singularitäten dieses Dubletts kann der H-H-Abstand $r_{\rm HH}$ innerhalb der Wassermoleküle bestimmt werden (siehe Abschnitt 1.5). Zur Untersuchung dieses H-H-Abstands wurden ¹H-Echo-NMR-Messungen bei $B_0 = 9,4$ T bzw. v_0 = 400,1 MHz mit einer Echo-Verzögerung von 10 μ s durchgeführt (File S4479H1, EXPNO 5).

Die Bestimmung des Abstands der Singularitäten des Pake-Dubletts im ¹H-NMR-Spektrum liefert einen Wert von 113 ppm, aus dem der H-H-Abstand $r_{\rm HH}$ nach Gl. (23) berechnet werden kann ($\gamma_{\rm H} = 2,675 \cdot 10^8 \text{ m}^2 \text{V}^{-1} \text{s}^{-2}$, $\hbar = 1,054589$ $\cdot 10^{-34} \text{ VAs}^2$, $\mu_0 = 1,2566 \cdot 10^{-6} \text{ VsA}^{-1}\text{m}^{-1}$). Der Vergleich des so berechneten H-H-Abstands von $r_{\rm HH} = 1,585$ Å stimmt sehr gut mit dem in der Literatur angegebenen und über Röntgen-Diffraktion ermittelten Wert von 1,533 Å überein.

3.3 Bestimmung der anisotropen ¹³C-Abschirmparameter von Glycin mittels ¹³C-CP-MAS-NMR

Glycin (NH₂CH₂COOH) ist bei Raumtemperatur ein Feststoff (Schmelzpunkt 232-236°C). Bei Anwendung der Kreuzpolarisationstechnik (CP) in Kombination mit der schnellen Probenrotation um den magischen Winkel

(MAS) können die ¹³C-Festkörper-NMR-Signale (¹³C: Spin I = 1/2) der beiden Kohlenstoffatome in natürlicher ¹³C- Häufigkeit schon nach einer Messzeit von wenigen Minuten identifiziert und ausgewertet werden.

Zur Untersuchung von Glycin wurden ¹³C-CPMAS-NMR-Spektren bei B_0 = 9,4 T bzw. v_0 = 100,6 MHz, mit einem Kontaktimpuls von 4 ms und v_{rot} = 2 kHz aufgenommen (File S4489C13, EXPNO 1).

Die Simulation des ¹³C-CPMAS-NMR-Seitenbandspektrums von Glycin liefert Anisotropien der chemischen Abschirmung von $\Delta \sigma_1 = -67,7$ ppm und $\Delta \sigma_2 = 16,1$ ppm sowie Asymmetrie-Parameter von $\eta_{CSA,1} = 0,9$ und $\eta_{CSA,2} \approx 0$. Diese sehr unterschiedlichen Abschirmparameter für C1 und C2 (siehe obiges Schema) stimmen sehr gut mit den unterschiedlichen Symmetrien in der Nahstruktur dieser Kohlenstoffatome überein.

1 S4489C13 1 1 D:\mhunger\TopSpin\service				
▋╨╗┟╞╗	ᡛ⋭≵ᢂৠαβ	3 7 LB GB L/G D O 🔶 식	ا ب 🔜 ا	
Main Spectrum Site Dip.Interaction Log	Glyzin, 2 kHz			[
Site1 Site2	SR = 156			-
Iteration Status				F
Cycle 1000 Best overlap(%) 69.21				t t
Mode CSA Options				t t
CSA		Signal 1	Signal 2	t_
Parameters		-		8
✓ Iy 4950441.2 ○ ✓ δ(iso) 176.384 ppm ●				F
Ø (ISO) ΠΟ.004 ppm © Ø δ(CSA) -67.72 ppm ©				F
				f
∠LB 32.22 Hz				Ĺ
GB 0 0				- ×
				ſ
				Γ
				[
				-
		1 I I		
			l	
				-
Add Delete Step Length	250	200 150	100 50 [pr	

3.4 Untersuchung der Na⁺-Populationen im dehydratisierten Zeolith Na-Y mittels ²³Na-MAS-NMR

Im Zeolith Na-Y kompensieren Na⁺-Kationen die negativen Gerüst-Ladungen in der Nahstruktur von Gerüst-Aluminiumatomen (²³Na: Spin I = 3/2). Diese Na⁺-Kationen können im Zentrum eines hexagonalen Prismas (SI) oder vor einem 6-Ringfenster (SI', SII) lokalisiert sein. Auf diesen kristallographischen Positionen unterliegen die Na⁺-Kationen sehr unterschiedlichen Quadrupol-Wechselwirkungen (QCC: C_q).

Zur Untersuchung der Population der Na⁺-Plätze im dehydratisierten Zeolith Na-Y wurde eine ²³Na-MAS-NMR-Messung (²³Na: Spin *I* = 3/2) bei B_0 = 9,4 T bzw. v_0 = 105,8 MHz, mit Ein-Impuls-Anregung (π /6) und mit v_{rot} = 12 kHz durchgeführt (File S4348Na23, EXPNO 2).

Die Simulation dieses ²³Na-MAS-NMR-Spektrums liefert die Quadrupol-Kopplungskonstanten $C_{Q,1}$ und $C_{Q,2}$ von 0,9 MHz (SI) und 3,9 MHz (SI⁺, SII), sowie relative Intensitäten von $I_1 = 29,5$ % (SI) und $I_2 = 70,5$ % (SI⁺, SII). Diese relativen Intensitäten entsprechen dem Verhältnis der Na⁺-Populationen auf den Kationenpositionen SI bzw. SI⁺+SII im dehydratisierten Zeolith Na-Y.

4. Literatur

[Andrew1]	E.R. Andrew, A. Jasinski, J. Phys. C 4 (1971) 391.
[Freude1]	D. Freude, Quadrupolar Nuclei in Solid-state Nuclear Magnetic
	Resonance, in: Encylopedia of Analytical Chemistry, R.A, Meyers
	(Ed.), Wiley, New York, Chichester, 2000, pp. 12188-12224.
[Fraiss1]	J. Fraissard, R. Vincent, C. Doremieux, J. Kärger, H. Pfeifer,
	Application of NMR Methods to Catalysis, in: Catalysis, Science and
	Technology, J.R. Anderson, M. Boudart (eds.), Springer-Verlag, Berlin,
	Heidelberg, 1996, pp. 1-176.
[Frydman1]	L. Frydman, J.S. Harwood, Isotropic Spectra of Half-integer
	Quadrupolae Spins from Bidimensional Magic-angle Spinning NMR, J.
	Am. Chem. Soc. 117 (1995) 5367.
[Grimmer1]	AR. Grimmer, B. Blümich, Introduction to Solid-state NMR, in:
	Solid-state NMR II – Iorganic Matter, NMR Basic Principles and
	Progress, Vol. 30, Springer-Verlag, Berlin, Heidelberg, 1994, pp. 1-62.
[Michel1]	D. Michel, F. Engelke, NMR Basic Principles and Progress, Vol. 32,
	Springer-Verlag, Berlin, Heidelberg, 1995, pp. 69-125.
[Pfeifer1]	H. Pfeifer, NMR Basic Principles and Progress, Vol. 31, Springer-
	Verlag, Berlin, Heidelberg, 1994, pp. 32-90.
[Rose1]	M.E. Rose, Elementary Theory of Angular Momentum, Wiley, New
	York, Chichester, 1967.

Anhang 1

Knight-Verschiebung der NMR-Signale von ²⁹Si- und ²⁷Al-Kernen in Nachbarschaft von paramagnetischen Zentren

Hyperfine interactions between unpaired electrons and framework atoms in aluminosilicate sodalites containing paramagnetic Na₄³⁺ clusters: a ²⁹Si and ²⁷Al MAS NMR study

G. Engelhardt et al., Chem. Commun, 1996, 729

Fig. 1 Sodalite cages containing diamagnetic Na_3^{3+} (left cage) and paramagnetic Na_4^{3+} clusters (right cage). Alternating Si and Al atoms at the vertices of the cage structure are interconnected by oxygen atoms which are omitted for clarity. Black circles represent Na^+ cations located above the centres of the six-rings.

Fig. 2 ²⁹Si and ²⁷Al MAS NMR spectra of black sodalite at 295 K. Spinning speeds, pulse widths, pulse delays, and number of scans were 10 kHz, 0.7 μ s, 0.5 s, and 400 for ²⁷Al, and 3 kHz, 3 μ s, 10 s, and 1000 for ²⁹Si, respectively. * Denotes spinning side bands.

Anhang 2

Aufbau eines Pake-Dubletts für Kerne I im gesamten Winkelbereich für β_{ik} und mittels Spiegelung von zwei Tensoren für $m_S = \pm 1/2$ der Nachbarkerne S

Anhang 3

Einfluss der Nahstruktur und lokaler Bindungen auf die Hauptachsenwerte von Abschirmtensoren von ¹³C-Kernen

