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1.  Einführung zu Kernspin-Wechselwirkungen in Festkörpern 

1.1 Übersicht zu Kernspin-Wechselwirkungen 

 

-   Positionen und Formen von Festkörper-NMR-Signalen (FKNMR) werden  

durch folgende Kernspin-Wechselwirkungen bestimmt: 

 

Htotal = H0 + HQ + HK + HDI + HCSA + HJ   (1) 

 

Hamilton-

Operator 

Beschreibung Frequenz / 

Signalverbreiterung 

H0 Zeeman-Wechselwirkung des 

magnetischen Kern-Dipol-Momentes µi 

mit dem Magnetfeld B0 

 10
9
 s

-1
 

HQ Wechselwirkung des elektrischen Kern-

Quadrupol-Momentes von Kernen mit  

I > ½ mit dem elektrischen Feldgradien-

ten am Kernort 

 10
7
 s

-1
 

HK Knight-Verschiebung durch 

Wechselwirkung der resonanten Kerne 

mit ungepaarten Elektronen  

 10
5
 s

-1
 

HDI direkte Wechselwirkung des 

magnetischen Dipol-Momentes des 

resonanten Kernes mit den magnetischen 

Dipol-Momenten benachbarter Kerne 

 5  10
4
 s

-1
 

HCSA anisotrope chemische Abschirmung  

  aufgrund der Abschirmung des B0-

Feldes durch Elektronenhüllen 

 5  10
3
 s

-1
 

HJ J-Kopplung, skalare Wechselwirkung 

oder indirekte Kernspin-Kernspin-

Wechselwirkung, vermittelt über 

Bindungselektronen 

 

 5  10
2
 s

-1
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1.2 Zeeman-Wechselwirkung 

 

-   Hamilton-Operator H0 der Zeeman-Wechselwirkung für Kerne mit Spin I und 

dem gyromagnetischen Verhältnis I  in einem äußeren Magnetfeld B0: 

   H0 = IIB0       (2) 

-   Aufspaltung der Kernspin-Energieniveaus entsprechend der magnetischen     

Quantenzahlen m (unten links) 

-   die Übergangsfrequenz zwischen diesen Energieniveaus entspricht der  

    Larmor-Frequenz 0: 

0 = 




2

I  B0        (3) 

- im klassischen Bild ist die Larmor-Frequenz die Umlauffrequenz der  

    magnetischen Dipol-Momente µi (bzw. µ) auf einem Kegelmantel,    

    ausgerichtet in B0-Richtung (unten rechts) 

                                    

 

1.2   Quadrupol-Wechselwirkung 

 

- Kerne mit Spin I > ½ besitzen eine elliptische Ladungsverteilung   
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- diese Ladungsverteilung bewirkt ein elektrisches Kern-Quadrupol-Moment 

eQ  (proportional zur quadrupolaren Anisotropie QA in obiger Abbildung) 

 

Kern 
2
H 

23
Na 

27
Al 

41
Ca 

241
Pu

 

Spin I 1 3/2 5/2 7/2 5/2 

eQ e  0,29 e  10,40 e  14,66 -e  6,70 e  560 

 

-  bei Spin I = 3/2, 5/2, 7/2 etc. gibt es neben dem Zentral-Übergang (-1/2   

   +1/2) zusätzliche Satelliten-Übergänge (z.B. -3/2  -1/2, +1/2  +3/2 etc.) 

                     

m

3/2

1/2

+1/2

+3/2

  Zeeman                Zeeman + quadrupolar 
interaction                       interaction

central
transition

satellite
transition

satellite
transition

  = (1/2) (3cos -1)Q

2



 0 +  2

 0 -  2

0  

 
 

-  Signal des Zentral-Übergangs erscheint im Signal-Schwerpunkt nahe 0 

-  Satelliten-Signale sind um 2 zum Zentral-Übergang verschoben  

-    hängt von Quadrupol-Frequenz Q = 2Q und dem Winkel  zwischen der 

    z-Richtung des elektrischen Feldgradienten Vzz = eq am Kernort 

(Nahstrukturparameter) und der B0-Richtung ab 

         




  

                 

Q

Q
Q      

  Einkristall      Pulverprobe 
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- relative Signalintensitäten A des Zentral-Übergangs (CT) und der Satelliten-

Übergänge (ST): 

   A(CT,ST)  = 
)12)(1(

)1()1(

2

3





III

mmII
    (4)

      

     Übergang:        ST     ST     ST     ST     CT     ST      ST     ST     ST            

  ___________________________________________________________ 

 I = 1     1/2  1/2  

 

 I = 3/2   3/10  4/10  3/10 

 

 I = 2   2/10  3/10  3/10  2/10 

 

 I = 5/2   5/35  8/35  9/35  8/35  5/35 

                           (Kerne mit Spin I = 1, 2, 3 etc. haben keinen Zentral-Übergang) 

 

- Hamilton-Operator HQ der Quadrupol-Wechselwirkung: 

  HQ = 
)12(4

2

II

qQe
[3Iz

2
I(I+1)] 
















2cossin

22

1cos3 2
2

Q   (5) 

mit Asymmetrie-Parameter Q  und Komponenten des elektrischen 

Feldgradienten V (Vzz ≥ Vyy ≥ Vxx): 

zz

yyxx

Q
V

VV 
        (6) 

und den Euler-Winkeln   und   zwischen den Hauptachsen des Tensors des  

    elektrischen Feldgradienten und des Laborkoordinatensystems 

- die Quadrupol-Kopplungskonstante Cq beschreibt die Stärke der Quadrupol-

Wechselwirkung (proportional zum Produkt von eQ und eq = Vzz): 

   Cq = 
h

qQe2

        (7) 

- Zusammenhang von Cq und Quadrupol-Frequenz Q = 2Q: 

   Q = Q / 2 = 
hII

qQe

)12(2

3 2


= 

)12(2

3

II

Cq
    (8) 
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- Frequenzverteilungsfunktion (Signalform) des Zentral-Übergangs (1/2  

+1/2) von Quadrupol-Kernen [Freude1]: 

  1/2 =  









4

3
)1(

6 0

2

II
Q




(Acos

4cos
2C  (9) 

     mit 

  A =  2cos
8

3
2cos

4

9

8

27 22      (10) 

  B =  2cos
4

3
2cos2

2

1

4

15 222       (11) 

  C =  2cos
8

3
2cos

4

1

3

1

8

3 222       (12) 

 

- Signalformen von Zentral-Übergängen für unterschiedliche Asymmetrie-

Parameter Q (hier ) in Einheiten von (- 0) / X mit: 

            X = 
0

2

4

3
)1(

9

1



Q
II 








                                (13) 

                    (- 0) / X 

     statisch               MAS 
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      zu MAS, d.h. Probenrotation um den magischen Winkel, siehe Abschnitt 2.3 

- die Signalschwerpunkte des Zentral-Übergangs und der Satelliten-Übergänge 

sind um die Frequenzdifferenz   verschoben [Freude1]: 

    = 









3
19

30

2

0

2




 Q       (14) 

- zusätzlich zeigt der Signalschwerpunkt des Zentral-Übergangs eine 

feldabhängige (B0-Feld) Resonanzverschiebung QS (quadrupolare 

Verschiebung, quadrupolar shift): 

   QS  )
3

1
1(

4

3
)1(

30

1 2

0

2














II

Q     (15) 

 

Vier Methoden zur Bestimmung der Quadrupol-Wechselwirkung 

1) Bei schwacher Quadrupol-Wechselwirkung kann der Abstand der 

Singularitäten der Satelliten-Übergänge ausgewertet werden (Seite 4, 

unten). 

2) Alternativ kann die Differenz  der Signalschwerpunkte der Satelliten- 

und Zentral-Übergänge gemessen und ausgewertet werden (Gl. (14)).  

3) Im Falle von starker Quadrupol-Wechselwirkung kann eine Computer- 

Simulation der Signalform des Zentralüberganges durchgeführt werden 

(Seite 6, unten). 

4) Bei sehr starker Quadrupol-Wechselwirkung kann die feldabhängige 

quadrupolare Verschiebung QS des Signals des Zentralübergangs bei 

verschiedenen B0-Feldern gemessen und ausgewertet werden (Gl. (15)). 

 

Nutzen der gewonnenen spektroskopischen Daten 

- Quadrupol-Frequenz Q und Asymmetrie-Parameter Q spiegeln die 

Ladungsverteilung und Symmetrie (elektrischer Feldgradient) in der 

Nahstruktur der resonanten Quadrupol-Kerne wider (siehe Abschnitt 3.4) 
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- ermöglichen Unterscheidung von Atomen auf verschiedenen 

kristallographischen Positionen und/oder in amorphen Phasen 

1.4 Knight-Verschiebung 

 

- Resonanzverschiebung (Knight-Verschiebung/-shift) der NMR-Signale von 

Kernen in direkter Nachbarschaft von ungepaarten Elektronen 

- wird auch als Fermi-Kontakt-Wechselwirkung dieser Kerne mit 

paramagnetischen Zentren bezeichnet  

- Knight-Shift K (in ppm) oder  (in Frequenzeinheiten) [Fraiss1]: 

   K = 
0


 = 

ne

Pa




       (16) 

mit Pauli-Suszeptibilität der ungepaarten Elektronen P  und den 

gyromagnetischen Verhältnissen der Elektronen e und des Kerns n 

- Parameter a hängt von der Stärke der Hyperfein-Wechselwirkung der Kerne 

mit den ungepaarten Elektronen ab 

- Hamilton-Operator HK für die Knight-Verschiebung des Signals eines Kerns 

mit Spin I:  

    HK = n IB0       (17) 

- die Knight-shift K ist oft stärker als die Wirkung der Abschirmung   bzw. 

der chemischen Verschiebung und hat meist ein positives Vorzeichen: 

     = 0(1 -  + K)       (18) 

- somit kann eine große positive Resonanzverschiebung ein Hinweis für das 

Vorliegen von metallischen Clustern mit ungepaarten Elektronen in der 

direkten Umgebung resonanter Kerne sein 

 

Experimenteller eweis für die Knight-Verschiebung 

- Überprüfung der Temperaturabhängigkeit von K mittels Korringa-Gleichung: 

   K
2
 = 

TT
S

k n

e

B 1

2

1

4 

















       (19) 
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mit Spin-Gitter-Relaxationszeit T1, Temperatur T und Skalierungsfaktor S  

 

Nutzen der gewonnenen spektroskopischen Daten 

- Nachweis von ungepaarten Elektronen in der Umgebung der resonanten 

Kerne und deren Lokalisierung (siehe Anhang 1) 

 

1.5    Dipol-Dipol-Wechselwirkung 

 

- Wechselwirkung des resonanten Kerns I mit den magnetischen Dipol-

Momenten benachbarter Kerne (Kerne S) 

- Dipol-Momente von Nachbarkernen erzeugen schwache Magnetfelder, die 

das B0-Feld überlagern (siehe unten)  

                                   

- Dipol-Dipol-Wechselwirkungen hängen vom Kern-Kern-Abstand rIS und dem 

Winkel IS des Kern-Kern-Verbindungsvektors zur B0-Feldrichtung ab 

- Hamilton-Operator für die homonukleare (gleichartige Kerne I mit I) und die 

heteronukleare (unterschiedliche Kerne I und S mit I  S) Dipol-Dipol-

Wechselwirkung HDI,II bzw. HDI,IS: 

  HDI,II = 





4

02SI  











 

2

cos311
2

3

IS

ISr


(3IzSzIS)   (20) 

  HDI,IS = 





4

02SI  











 

2

cos311
2

3

IS

ISr


IzSz    (21) 

- alternative Schreibweise:  
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  HDI =  DI(A + B)       (22) 

mit  DI = (





4

0ki )/rik
3
       (23) 

   A = ( ik2cos31 )IziIzk      (24) 

   B = 
4

1
 ik2cos31 I+iIk + IiIk]    (25) 

Term A: Verteilung der Larmor-Frequenz aufgrund unterschiedlicher lokaler 

Magnetfelder am Ort der resonanten Kerne 

Term B: Flip-Flop-Term, der den Polarisationstransfer (Spin-Diffusion, T2-

Relaxation) zwischen benachbarten Spins beschreibt 

- Spektren von dipolar wechselwirkenden Kern-Paaren mit Spin I = 1/2 

bestehen aus zwei gespiegelten Teilspektren, da der jeweilige Nachbar-Kern S 

des resonanten Kerns I zwei mögliche Quantisierungszustände mS = 1/2 hat  

       

3/2 (3cos -1) DI ik

2

          

3/2 DI

 
     Einkristall         Pulverprobe 

 

- bei polykristallinen Proben überstreicht der Winkel ik alle Werte von 0
o
 bis 



 und es entsteht ein Pulverspektrum (siehe oben, rechts), auch Pake-

Dublett genannt (siehe auch Anhang 2 und Abschnitt 3.2) 

 

Nutzen der gewonnenen spektroskopischen Daten 
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- Auswertung der Stärke der dipolaren Wechselwirkung ermöglicht die 

Bestimmung von Kern-Kern-Abständen in kristallinen als auch amorphen 

Feststoffen  

 

1.6    Anisotrope chemische Abschirmung bzw. Verschiebung 

 

- Abschirmung des B0-Feldes durch die den Kern umgebende Elektronenhülle  

- Abschirmung   ist meist anisotrop, d.h. ist Tensor mit zzyyxx 

                                

- Hamilton-Operator HCSA der anisotropen chemischen Abschirmung: 

    HCSA =  IB0       (26) 

- Frequenzverteilungsfunktion (Signalform) verursacht durch anisotrope 

chemische Abschirmung: 

    = 0[(1 - iso ) - 













2cossin

22

1cos3 2
2

CSA ]  (27) 

mit isotroper Abschirmung iso (bzw. -iso): 

     iso  = 
3

1
(xx+yy+zz)     (28) 

Anisotropie   = (zziso)      (29) 

und Asymmetrie-Parameter CSA: 

     CSA






 )( xxyy
      

- in Flüssigkeiten bewirkt die schnelle Umorientierung der Moleküle eine 

Ausmittlung der anisotropen Terme in Gl. (27) zu: 

    = 0(1 - iso)        (31) 
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- in polykristalline Festkörperproben überstreichen die Euler-Winkel   und   

in Gl. (27) alle Werte von 0
o
 bis 


 und liefern folgende Signalformen: 

 

          
1 2 



  xx                          yy                                           zz           
1 2




xx  =yy
zz  

           allgemeiner Fall, CSA≠                      axiale Symmetrie, CSA 

- bei axialer Symmetrie (CSA) ist xx = yy  und es werden oft folgende 

Bezeichnung der Hauptachsenkomponenten des Abschirmtensors verwendet: 

    = zz        (32) 

    = xx = yy       (33) 

 

Nutzen der gewonnenen spektroskopischen Daten 

- die Größe der Anisotropie der chemischen Abschirmung liefert Informationen 

zur Natur und räumlichen Anordnung von Nachbaratomen (siehe Anhang 3) 

- unterstützen die Zuordnung von Signalen in FKNMR-Spektren (siehe 

Abschnitt 3.3) 

 

1.7     J-Kopplung bzw. indirekte Kernspin-Kernspin-Wechselwirkung  

 

- indirekte Kernspin-Kernspin-Wechselwirkung (J-Kopplung), die über 

Bindungselektronen vermittelt wird 

- ist eine skalare Größe, die unabhängig von Stärke des B0-Feldes ist  

- Hamilton-Operator HJ mit skalarer Größe Jij, die die Wechselwirkung 

zwischen den wechselwirkenden Kernen i und j beschreibt: 

HJ = IiJijSj        (34) 
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- die J-Kopplung bewirkt Signalaufspaltungen von bis zu ca. 5  10
2
 s

-1
, die 

aufgrund der großen Signalbreiten in FKNMR-Spektren meist überdeckt 

werden 

2. Messtechniken der Festkörper-NMR-Spektroskopie 

2.1  Sättigungsfreie Impulsanregung großer Spektrenbereiche 

 

Korrekte Pulsanregung 

- Hochfrequenz-Impulse (HF) mit der magnetischen Feldstärke B1 bewirken 

eine Drehung der Magnetisierung M mit der Nutationsfrequenz  = B1 aus 

der z-Richtung (B0-Richtung) in die x-y-Ebene: 

                                       

- in Abhängigkeit von der B1-Feldstärke (Impulsleistung bzw. Sendeleistung) 

kann /2 bis zu500 kHz betragen  

- Impulslänge tp für Nutationswinkel  = /2,  … : 

    tp = 
1


 = 

1B


      (35) 

- Abhängigkeit der Anregungsbreite  (spektraler Anregungsbereich) von der 

Einstrahlungsdauer tp eines HF-Impulses: 

      1/(tp)       (36) 

- Spektrenbereich z.B. von 3 MHz (bei 
27

Al-FKNMR) erfordert tp  0,1 µs! 

 

Vermeidung von Sättigung  
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- die Wiederholzeit von NMR-Experimenten (trep: repetition time) bei 

Anregung mit /2-Impulsen sollte ca. 5  T1 betragen (T1: Spin-Gitter-

Relaxationszeit)  

- anderenfalls tritt eine Sättigung des Spin-Systems (unvollständige Relaxation) 

und ein Verlust an Signalintensität auf 

- bei sehr langer T1-Zeit kann mit kürzeren Anregungsimpulsen bzw. 

Nutationswinkeln (Ernst-Winkel) opt angeregt werden (ohne Sättigung): 

    cos opt = exp{-trep/T1}     (37) 

- Beispiele für Ernst-Winkel opt  für ein Kernspin-System mit einer T1-Zeit 

von 5 s und kürzeren Experiment-Wiederholzeiten trep: 

   trep  7,5 s  5,0 s  2,5 s 

   opt  77
o
  68

o
  53

o
  

 

2.2 Signalverstärkung durch Kreuzpolarisation (CP) 

 

- Verstärkung der Signalintensitäten von Kernen S mit geringer natürlicher 

Häufigkeit und kleinem gyromagnetischen Verhältnis (S: 
13

C, 
15

N, 
29

Si etc.)  

- Nutzung des hohen Besetzungszahlunterschieds NI der Kernspin-

Energieniveaus von dipolar gekoppelten 
1
H-Kernen I zur Erhöhung von NS 

durch Polarisationstransfer von I- zu S-Spins (CP: cross polarization): 

     
S

I

S

I

N

N









       (38) 

- Voraussetzung ist eine Angleichung der Energieniveaus für beide dipolar 

gekoppelten Spin-Systeme I und S in den Magnetfeldkomponenten B1,I  und 

B1,S von HF-Impulsen (contact pulses bzw. Kontaktimpulse) 

Erf

spins I spins S

I 1,IB S 1,SB=

 

 

__________________________________ 
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I

decoupling

free induction 
               decayS

t

t

/2)x

(contact
 pulse)y

 
 

- ein/2-Impuls erzeugt I-Polarisation und die Kontaktpulse ermöglichen einen 

Polarisationstransfer zu benachbarten S-Spins, wenn die Hartmann-Hahn-

Bedingung erfüllt ist:   

 IB1,I = SB1,S       (39)  

- während der Detektion der NMR-Signale der S-Spins wird im Kanal der I-

Spins ein langer Entkoppelimpuls eingestrahlt, der die signalverbreiternde 

dipolare I-S-Wechselwirkungen reduziert 

 

Einflussgrößen des CP-Experiments 

- die durch die Kreuzpolarisation entstehende Polarisierung MS(t) der S-Spins 

hängt von der Dauer t der Kontaktimpulse ab [Michel1]: 

                     

M tS( )

t
tm

exp{- / }t T1 ,I

1-exp{- / }t TIS

   

- Einflussgrößen sind die Relaxationszeit T1,I der I-Spins im B1,I-Feld 

(gestrichelte Kurve), die Kreuzpolarisationsrate TIS: 

    

2/1

,2

,2
5

2

2

31















II

IS

IS M
M

T


      (40) 

die zweiten Momente M2,IS und M2,II der dipolaren I,S- und I,I-

Wechselwirkung (Stärke dieser Dipol-Dipol-Wechselwirkungen) 
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und der Parameter : 

     = 1 + 
I

IS

S

IS

T

T

T

T

,1,1 

        (41) 

- das Optimum für Ms(t) wird nach der Kontaktzeit tm erreicht: 

    tm = 















IS

I

ISI

IIS

T

T

TT

TT ,1

,1

,1
ln





       (42) 

Hinweis 

- wegen der zahlreichen Einflussgrößen auf MS(t) wird optimale Länge der 

Kontaktpulse (1 bis 6 ms) meist experimentell ermittelt 

- da Parameter in Gl. (40) bis (42) oft nicht bekannt sind, ist keine exakte 

quantitative Auswertung und Diskussion der Signalintensitäten möglich   

 

2.3 Schnelle Probenrotation um den magischen Winkel (MAS) 

 

- Überlappung breiter FKNMR-Signale erfordert für deren Trennung und 

Auswertung die Anwendung von Techniken der Signalverschmälerung 

- Ausmittelung von Kernspin-Wechselwirkungen durch schnelle Proben- 

rotation (rot von bis zu 60 kHz) um Achse im Winkel von  = 54,7
o
 zur B0-

Richtung (magischer Winkel, MAS: magic angle spinning) 

- hierbei wird Geometrieterm (3cos
2- 1) vieler Frequenzverteilungs-

funktionen ausgemittelt 
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- Hamilton-Operator z.B. der dipolaren I,S-Wechselwirkung wird bei MAS zu: 

   HDI, IS(t) = ½ ijħ
2
rij

-3 
(IiSj - 3IizSjz)   

{ (1/2) (3cos
2 – 1)  (3cos

2’ij – 1)  Zentrallinie 

+ (3/2) sin
2sin

2 ’ij  cos(2rott + 0ij)  Seitenbänder (43) 

+ (3/2) sin
2sin

2 ’ij  cos
2
(2rott + 0ij) }  Seitenbänder 

-   MAS-NMR-Spektren bestehen daher aus der Zentrallinie und den um ±rot   

     verschobenen Rotationsseitenbändern (spinning sidebands)  

 

Rotation um den magischen Winkel mittels Vielimpulsgruppen 

- bei sehr starker homonuklearer Dipol-Dipol-Wechselwirkung kann es 

vorkommen, dass MAS alleine keine ausreichende Signalverschmälerung 

ermöglicht 

- hilfreich kann die Einstrahlung einer Vielimpulsgruppe (siehe unten) sein, 

z.B. in Kombination mit MAS (CRAMPS: Combined Rotation And 

Multipulse Sequence)  

- mit der Impulsgruppe WAHUHA wird die Magnetisierung mittels /2-

Impulsen für gleiche Zeiten von der z-Richtung (001) in die x- (100), y- (010) 

und wieder zurück in die z-Richtung (001) gedreht 

0
t

aqu. aqu.cyclecycle
 

 

- dies entspricht einer Rotation der Magnetisierung um die (111)-Achse, die im 

magischen Winkel von 54,7
o
 zur z-Richtung (001) steht [Grimmer 1] 
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001

100

010

 
 

-  die Impulsgruppe besteht aus einer Wiederholung von n Zyklen (cycle), in 

denen jeweils ein Datenpunkt des Induktionsabfalls gemessen wird (aqu.)  

Einschränkung der Wirkung der MAS bei thermischer Bewegung 

- eine thermische Bewegung (beschrieben mittel Korrelationszeit c) der 

resonanten Kerne beeinträchtigt die Wirkung der MAS und führt zu einer 

Restlinienbreite 1/2
MAS

  der Zentrallinie von [Andrew1]: 

         1/2
MAS

 = 











 22,2
)(41)(1

2

6

1

crot

c

crot

c

ISM









   (44) 

 

li
n

e
 w

i d
t h

 


1
/2

1/M21/rot
c

MAS

without MAS
1/2, equ. (60)

6M /(15 )2 rot

 
 

 

- der Einfluss der thermischen Bewegung auf das gesamte MAS-NMR-

Spektrum kann anhand des Induktionsabfalls G
MAS

(t) berechnet werden, mit 

nachfolgender Fourier-Transformation in den Frequenzbereich [Pfeifer1]:  

   G
MAS

(t) = exp{-(M2,IS/3)[2J(rot, t)+J(2rot, t)]}  (45) 
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mit   J(rot, t) ) = ))cos(1(
))(1(

)1)((

)(1

/

22

22

2
te

t
rot

t

crot

crotc

crot

c c 






 








 

   )sin(
))(1(

2 /

22

3

te rot

t

crot

crot c 


 


      (46) 

 

Beispiel für Signalverbreiterung durch thermische Bewegung 

- berechnete 
1
H-MAS-NMR-Spektren von strukturellen OH-Gruppen 

(Si(OH)Al) im Zeolith H-Y (dipolare 
1
H-

27
Al-Wechselwirkung von M2,IS = 

0.7  10
-8

 T
2
) für rot = 3 kHz und c = 10 µs bis 10 ms: 

          

  

Hinweis 

- eine gute Ausmittelung von Festkörper-Wechselwirkungen mittels MAS ist 

nur bei c >> 1/rot   bzw.  rot >> 1/c  möglich 

- deshalb sind hohe Probenrotationsfrequenz und/oder tiefe Temperatur (großes 

c) hilfreich 

 

Einschränkung der Wirkung der MAS bei Quadrupol-Kernen (S > ½)  

- die Wirkung der MAS bei Quadrupol-Kernen kann durch das zweite Moment 

M2,Q
MAS

 beschrieben werden, das proportional zur Stärke der nicht 

ausgemittelten Restwechselwirkung ist [Freude1]: 
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   M2,Q
MAS

 = 2

4

1
QS     (für QS siehe Gl. (15))   (47) 

- ohne MAS, d.h. statisch gemessen, ist das zweite Moment der Quadrupol-

Wechselwirkung: 

M2,Q
statisch

 = 2

7

23
QS         (48) 

- aus Gl. (47) und (48) folgt die durch MAS erreichbare Reduzierung der Breite 

(proportional zur Quadratwurzel von M2) der Signale von Zentralübergängen 

(vergleiche Spektren auf S. 6, unten): 

   
4

1

6.3

1

92

7

,2

,2


static

Q

MAS

Q

M

M
      (49) 

2.4  Vollständige Ausmittelung der quadrupolaren Wechselwirkung 

mittels Probenrotation um zwei Achsen (DOR) 

 

-   bei Verwendung des Quanten-Zustands  p (quantum level) mit p/2  p/2 

anstelle von m   m ist die Frequenzverteilungsfunktion p/2,-p/2 für den 

Zentralübergang unter Anwendung von MAS [Freude1]: 

  p/2,-p/2 = p/2,-p/2
iso

  +  p/2,-p/2
aniso

   

 = 
























0

2

2

0

22

129604

3
)1(

90

)3(







 QQ p
pII

p
   (50) 

       4cos702cos360)18( )4(

0,4

2)4(

0,2

)4(

0,0

2  ddd  

      








 )3cos30cos35()
28

9
(1017)1(36 242 pII  

-  Ausmittlung des anisotropen Terms p/2,-p/2
aniso

, wenn  = 30,56
o
 oder 70,12

o
 

(35cos
4- 30cos

2+ 3 = 0), d.h. eine Probenrotation um eine zweite Achse in 

einem dieser Winkel  durchgeführt wird (DOR: double oriented rotation). 
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outer

B0



inner

 

 

-  der kleine innerer Rotor, der die Probe enthält, kann mit rot ca. 6 – 8 kHz 

rotieren, während der große äußere Rotor meist nicht mehr als 2 kHz erreicht 

 

Einschränkungen der DOR-Technik 

-  schlechtes Signal/Rausch-Verhältnis wegen schlechtem Spulenfüllfaktor 

-  viele Rotationsseitenbänder wegen kleinem rot des äußeren Rotors 

2.5  Vollständige Ausmittlung der quadrupolaren Wechselwirkung mit 

Hilfe von Mehrquanten-NMR-Experimenten (MQ) 

 

-  Kombination von MAS-Technik mit Impulsgruppe (Echo-Sequenz) zur 

Eliminierung der Restsignalbreite der Zentralübergänge von Quadrupol-

Kernen 

-  Anregung von Mehrquanten-Übergängen m1 (MQ: multiple-quantum) mit 

leistungsstarken Impulsen, Mehrquanten-Entwicklungszeit t1 und Signal-

Detektion während der Zeitperiode t2 nach Konvertierung in Einquanten-

Übergänge m2 mittels schwachen Impulsen [Frydman 1] 
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p

t1

t1 t2

z-filter
pulse

a)

b)

excitation
   pulse

excitation
   pulse

conversion
    pulse

conversion
    pulse

t2

p

echo

echo

 3
 2
 1
 0
-1
-2
-3

 3
 2

 1
 0

-1
-2

-3  

 

-  Bedingungen für t1 und t2 in den oben dargestellten Impuls-Sequenzen 

[Frydman1]: 

    t1 C4(m1)  +  t2 C4(m2)  =  0     (51) 

  mit C4(m1) = -42 und C4(m2) = 54 für Kerne mit Spin I = 3/2 sowie  

C4(m1) = -300 und C4(m2) = 228 für Kerne mit Spin I = 5/2 

 - Aufnahme der Echo-Signale G(t1,t2)  zum Zeitpunkt t2,echo entsprechend: 

    t2,echo = [C4(m1)/C4(1/2)] t1       (52)        

-   zweifache Fourier-Transformation (FT) der Echo-Signale G(t1,t2) als Funktion 

der Mehrquanten-Entwicklungszeit t1 liefert zweidimensionales (2D) 

MQMAS-NMR-Spektrum 

- liefert quadrupolar verbreiterte MAS-NMR-Signale entlang der 2-Achse (FT 

von t2) und vollständig isotrope Signale (Quadrupol-Wechselwirkung 

vollständig ausgemittelt) entlang der 1-Achse (FT von t1).  

 

Einschränkungen der MQMAS-NMR-Technik 

-  MQ-Impulssequenzen sind nur für begrenzte Bereiche von Cq-Werten 

optimierbar  

-  Signalintensitäten der 2D-MQMAS-NMR-Spektren sind nicht quantitativ 

auswertbar 
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Beispiel für Anwendung der MQMAS-NMR-Technik 

- 2D-MQMAS-NMR-Spektrum von 
17

O-Atomen in den Si
17

OSi- (80%, CQ = 

5,3 MHz) und Si
17

OAl-Brücken (20%, CQ = 3,5 MHz) eines kristallinen 

Alumosilikats [Freude 1] 
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3. Anwendungsbeispiele 

3.1 Bestimmung des Gerüst-nSi/nAl-Verhältnisses von kristallinen 

Alumosilikaten mittels 
29

Si-HPDEC-MAS-NMR 

 

Die isotrope chemische Verschiebung Si von 
29

Si-Atomen (
29

Si: Spin I = 1/2) in 

kristallinen Alumosilikaten hängt in charakteristischer Weise von der Art und 

Zahl der Atome auf den direkt benachbarten T-Positionen ab (siehe unten). 

                      

Daher kann mit Hilfe der relativen Intensitäten ISi(nAl) der 
29

Si-MAS-NMR-

Signale der Si(nAl)-Spezies in diesen kristallinen Feststoffen das Gerüst-nSi/nAl-

Verhältnis berechnet werden: 

         nSi/nAl =  
 


4

0

4

0

)()( 25.0/
n n

nAlSinAlSi InI     (53) 

 

Diese Methode erlaubt die Veränderung des Gerüst-nSi/nAl-Verhältnisses eines 

kristallinen Alumosilikats nach dessen Dealuminierung zu bestimmen. 

Zur Untersuchung des Aluminiumgehaltes im Gerüst eines kristallinen 

Alumosilikats wurde eine 
29

Si-MAS-NMR-Messung bei B0 = 9,4 T bzw. 0 = 
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79,4 MHz, mit Ein-Impuls-Anregung (/2), 
1
H-Entkopplung (HPDEC) und rot 

= 4 kHz durchgeführt (File S4000Si21, EXPNO 1).  

Zur Auswertung wurden das 
29

Si-HPDEC-MAS-NMR-Spektrum des 

kristallinen Alumosilikats in seine Einzelkomponenten zerlegt und die relativen 

Intensitäten ISi(nAl) bestimmt. Die Berechnung des Gerüst-nSi/nAl-Verhältnisses 

mit Hilfe von Gl. (53) lieferte den Wert von nSi/nAl = 2,73. 

 

 

3.2 Bestimmung des H-H-Abstands von Kristallwasser im Gips mittels 

1
H-Festkörper-NMR 

 

Gipskristalle (CaSO42H2O) besitzen fest gebundene und isolierte Wasser-

moleküle. Diese Wassermoleküle erzeugen im statisch aufgenommenen 
1
H-

NMR-Spektrum ein Pake-Dublett (
1
H: Spin I = 1/2). Aus dem Abstand der 

Singularitäten dieses Dubletts kann der H-H-Abstand rHH innerhalb der 

Wassermoleküle bestimmt werden (siehe Abschnitt 1.5). Zur Untersuchung 

dieses H-H-Abstands wurden 
1
H-Echo-NMR-Messungen bei B0 = 9,4 T bzw. 0 

Si(1Al): 

62,2% 

Si(0Al): 

32,6% 

Si(2Al): 

14,6% 

Si(3Al): 

13,8% 
SiO2: 9,4% 
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= 400,1 MHz mit einer Echo-Verzögerung von 10 µs durchgeführt (File 

S4479H1, EXPNO 5). 

Die Bestimmung des Abstands der Singularitäten des Pake-Dubletts im 

1
H-NMR-Spektrum liefert einen Wert von 113 ppm, aus dem der H-H-Abstand 

rHH nach Gl. (23) berechnet werden kann (H = 2,67510
8
 m

2
V

-1
s

-2
, ħ = 1,054589 

10
-34

 VAs
2
, µ0 = 1,2566 10

-6
 VsA

-1
m

-1
). Der Vergleich des so berechneten H-H-

Abstands von rHH = 1,585 Å stimmt sehr gut mit dem in der Literatur 

angegebenen und über Röntgen-Diffraktion ermittelten Wert von 1,533 Å 

überein. 

 

 

3.3 Bestimmung der anisotropen 
13

C-Abschirmparameter von Glycin 

mittels 
13

C-CP-MAS-NMR 

 

Glycin (NH2CH2COOH) ist bei Raumtemperatur ein Feststoff (Schmelzpunkt 

232-236
o
C). Bei Anwendung der Kreuzpolarisationstechnik (CP) in 

Kombination mit der schnellen Probenrotation um den magischen Winkel 

113 ppm: 45,2 kHz = (3/4) DI   
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(MAS) können die 
13

C-Festkörper-NMR-Signale (
13

C: Spin I = 1/2) der beiden 

Kohlenstoffatome in natürlicher 
13

C- Häufigkeit schon nach einer Messzeit von 

wenigen Minuten identifiziert und ausgewertet werden.  

Zur Untersuchung von Glycin wurden 
13

C-CPMAS-NMR-Spektren bei B0 

= 9,4 T bzw. 0 = 100,6 MHz, mit einem Kontaktimpuls von 4 ms und rot = 2 

kHz aufgenommen (File S4489C13, EXPNO 1).  

 

Die Simulation des 
13

C-CPMAS-NMR-Seitenbandspektrums von Glycin 

liefert Anisotropien der chemischen Abschirmung von 1 = -67,7 ppm und 

2 = 16,1 ppm sowie Asymmetrie-Parameter von CSA,1 = 0,9 und CSA,2 ≈ 0. 

Diese sehr unterschiedlichen Abschirmparameter für C1 und C2 (siehe obiges 

Schema) stimmen sehr gut mit den unterschiedlichen Symmetrien in der 

Nahstruktur dieser Kohlenstoffatome überein. 

 

Signal 1                  Signal 2 
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3.4 Untersuchung der Na
+
-Populationen im dehydratisierten Zeolith  

Na-Y mittels 
23

Na-MAS-NMR 

 

Im Zeolith Na-Y kompensieren Na
+
-Kationen die negativen Gerüst-Ladungen in 

der Nahstruktur von Gerüst-Aluminiumatomen (
23

Na: Spin I = 3/2). Diese Na
+
-

Kationen können im Zentrum eines hexagonalen Prismas (SI) oder vor einem 6-

Ringfenster (SI’, SII) lokalisiert sein. Auf diesen kristallographischen Positionen 

unterliegen die Na
+
-Kationen sehr unterschiedlichen Quadrupol-

Wechselwirkungen (QCC: Cq). 

 

 

 

Zur Untersuchung der Population der Na
+
-Plätze im dehydratisierten Zeolith Na-

Y wurde eine 
23

Na-MAS-NMR-Messung (
23

Na: Spin I = 3/2) bei B0 = 9,4 T 

bzw. 0 = 105,8 MHz, mit Ein-Impuls-Anregung (/6) und mit rot = 12 kHz 

durchgeführt (File S4348Na23, EXPNO 2).  

Die Simulation dieses 
23

Na-MAS-NMR-Spektrums liefert die Quadrupol-

Kopplungskonstanten CQ,1 und CQ,2 von 0,9 MHz (SI) und 3,9 MHz (SI‘, SII), 

sowie relative Intensitäten von I1 = 29,5 % (SI) und I2 = 70,5 % (SI‘, SII).  Diese 

relativen Intensitäten entsprechen dem Verhältnis der Na
+
-Populationen auf den 

Kationenpositionen SI bzw. SI’+SII im dehydratisierten Zeolith Na-Y.    
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SI-Kationen 
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Anhang 1 

 

Knight-Verschiebung der NMR-Signale von 
29

Si- und 
27

Al-Kernen in 

Nachbarschaft von paramagnetischen Zentren   

 

 

    G. Engelhardt et al., Chem. Commun, 1996, 729 
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Anhang 2 

 

Aufbau eines Pake-Dubletts für Kerne I im gesamten Winkelbereich für ik  

und mittels Spiegelung von zwei Tensoren für mS = ± 1/2 der Nachbarkerne S 
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Anhang 3 

 

Einfluss der Nahstruktur und lokaler Bindungen auf die Hauptachsenwerte 

von Abschirmtensoren von 
13

C-Kernen 

 

 

 


