

Solid-state NMR studies on the vapor-phase Beckmann rearrangement of ¹⁵N-cyclohexanone oxime

V. R. Reddy Marthala, Sandra Rabl and Michael Hunger Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany

Introduction

Experimental Section

The nature and location of active sites of the solid catalyst and role of additive during the vapor-phase Beckmann rearrangement of cyclohexanone oxime is a matter of debate. Recent solid-state NMR [1,2] and theoretical investigations [2] reveal the formation of reaction intermediates, products, and by-products of the reaction. However, the adsorption (protonated or non-protonated) and reaction behavior of reactants and products on silanol and bridging OH groups in different catalysts are still uncertain and merits further investigations. In addition, the literature concerning the influence of additives on the species (reactants, products, and by-products) formed during the Beckmann rearrangement, the adsorption and desorption behavior of these species in the absence and presence of methanol, and the conversion of additives at different reaction temperatures is very scarce and controversial. In the present work, the adsorption and reaction behavior of the species (silicalite-1 and H-ZSM-5) and mesoporous SBA-15 materials have been investigated by solid-state ¹⁵N CP/MAS NMR spectroscopy. To study the influence of the additive methanol, ¹⁵N CP/MAS NMR spectra of ¹⁵N-oxime/catalyst mixtures in the absence and presence of ¹³C-methanol were recorded. Furthermore, the conversion of methanol during the reaction of ¹⁵N-oxime/catalyst mixtures was investigated by ¹³C CP/MAS NMR spectroscopy.

¹⁵N-cyclohexanone oxime/catalyst mixtures were prepared by mixing 15 and 20 mg of ¹⁵Noxime with 150 and 200 mg of dehydrated zeolite and SBA-15 material under dry nitrogen flow, respectively. ¹³C-methanol vapor was loaded into the mixtures using vacuum line. The mixtures were then transferred into a 7 mm MAS rotor. Solid-state ¹⁵N and ¹³C CP/MAS NMR spectra were recorded on a Bruker MSL 400 spectrometer at resonance frequencies of 40.53 and 100.58 MHz using a 7 mm MAS probe with the sample spinning rates of ca. 3.5 and 4.7 kHz, respectively. ¹⁵N and ¹³C CP/MAS NMR spectra were obtained with the contact period of 5 ms and the recycle delay of 2 s.

Results and Discussion

The assignments of ¹⁵N MAS NMR signals observed in this work are summarized in Table 1.
On siliceous catalysts (silicalite-1 and SBA-15), ¹⁵N-cyclohexanone oxime interacts with SiOH groups via hydrogen bonding as indicated by the signals in the range of -30 to -46 ppm (Figs. 1a, 1b, 1d, 1e, 2a-2c, and 2e).

> In contrast, exclusively on Brønsted acidic catalysts, such as H-ZSM-5, the reactant interacts strongly with Brønsted acid sites and form Nprotonated cyclohexanone oxime as shown by the signal at -160 ppm (Figs. 4a, 4b, 4d, and 4e).

> On siliceous catalysts, in addition to the main product ε -caprolactam (-255 to -262 ppm), byproducts hydroxylamine (-269 to -280 ppm) and amines (-380 to -387 ppm) were also observed.

Figure 2. ¹⁵N CP/MAS NMR spectra recorded upon conversion of ¹⁵Ncyclohexanone oxime on siliceous SBA-15 ($n_{\rm SI}/n_{\rm AI}$ = 1800) in the absence (left) and presence (middle) of ¹³C-methanol. ¹³C CP/MAS NMR spectra (right) show the presence of ¹³C-methanol. The reaction temperatures and heating times are given in the Figure. Asterisks in the NMR spectra denote spinning sidebands.

Figure 1. ¹⁵N CP/MAS NMR spectra recorded upon conversion of ¹⁵Ncyclohexanone oxime on silicalite-1 (n_{Si}/n_{Al} = 1700) in the absence (left) and presence (middle) of ¹³C-methanol. ¹³C CP/MAS NMR spectra (right) show the conversion of ¹³C-methanol. The reaction temperatures and heating times are given in the Figure. Asterisks in the NMR spectra denote spinning sidebands.

SBA-15 (left) and silicalite-1 (right) and their simulation.

Table 1. Assignments of ¹⁵N CP/MAS NMR signals of the species observed during the vapor-phase Beckmann rearrangement of ¹⁵N-cyclohexanone oxime.

$\delta_{15\mathrm{N}}$ / (ppm)	Assignments	
-30 to -46	¹⁵ N-cyclohexanone oxime interacting with SiOH groups of zeolites and mesoporous materials via hydrogen bonding	
-51 to -62	unconverted ¹⁵ N-cyclohexanone oxime on zeolites and mesoporous materials	
-145 to -160	N-protonated cyclohexanone oxime, exclusively formed on Brønsted acid sites of zeolites and mesoporous materials	
-237 to -243	O-protonated & caprolactam on Q ³ silanol groups	

➢ In case of silicalite-1, the formation of amines was suppressed when ¹³C-methanol was used as an additive, which is evidenced by the disappearance of signal at -387 ppm (Fig. 1e, and 1f). Furthermore, the additive methanol (49 ppm) was also converted into hydrocarbons (25-28 ppm) and isopropylamine (42 ppm) as shown by ¹³C CP/MAS NMR spectra (Fig.1, right). The isopropylamine was observed as a result of the reaction of isobutane and hydroxyl amine, which is a by-product of the Beckmann rearrangement. On SBA-15, however, no influence and conversion of methanol on the adsorbed species was found (Fig. 2).

> Interestingly, the formation of O-protonated ε -caprolactam was observed on both siliceous and Brønsted acidic catalysts as indicated by the signal at -237 ppm in the spectra of the ¹⁵N-oxime/catalyst mixtures (Figs. 1b, 1c, 2b, 2c, 2e, 2f, 4b, 4c, and 4f). However, on siliceous catalysts, the formation of O-protonated ε -caprolactam depends on the number of highly acidic Q³ (Si(OSi)₃OH) silanol groups (Fig. 3).

> Further conversion of O-protonated ε -caprolactam occur exclusively on Brønsted acidic H-ZSM-5 zeolite (Scheme 1). The conversion of O-protonated ε -caprolactam was enhanced by the presence of methanol. Since methanol dehydrates into dimethylether (60 ppm) and water on acidic H-ZSM-5, this water promotes the further conversion of O-protonated ε -caprolactam (-237 ppm) into non- or O-protonated ε -aminocapric acid (-347 to -364 ppm) as shown in Scheme 1.

		(SI(USI) ₃ UH) and Brønsted acid sites	Parininologine acid O-protonated <i>c</i> -aminocapric acid	A ⁻¹⁶⁰	1 ⁵⁵	Α
-25	5 to -262	physically adsorbed &caprolactam on SiOH groups and Brønsted acid sites		100 0 -100 -200 -300 -400		
-26	i9 to -282	hydroxylamine	Scheme 1. Suggested mechanism of the conversion of O-protonated &-caprolactam on Brønsted acidic H- ZSM-5 zeolite. The ¹⁵ N NMR shift values represented without parentheses were obtained in this work, while	δ _{15N} / ppm	$\delta_{\rm 15N}$ / ppm	δι 70 00 30 40 30 20 10 δ _{13C} / ppm
-34	0 to -364	N-protonated <i>ɛ</i> -caprolactam, or non- or O-	the values in the parentheses were obtained from the NNMR predictor software [3] or literature[2].	Figure 4. ¹⁵ N CP/MAS	NMR spectra recorded	upon conversion of ¹⁵ N
		protonated &-aminocapric acid, exclusively formed on Bransted acid sites		cyclohexanone oxime on	<mark>H-ZSM-5 (n_{Si}/n_{Al} = 14) in the</mark> a	absence (left) and presence
		formed on Drønsted acid sites		(middle) of ¹³ C-methanol.	¹³ C CP/MAS NMR spectra (ri	ight) show the conversion
-375 to -387	'5 to -387	amines formed on SiOH groups of siliceous	Conclusions	¹³ C-methanol. The reaction temperatures and heating times are given in th		
	zeolites and mesoporous materials	CUIICIUSIUIIS	Figure. Asterisks in the NM	IR spectra denote spinning s	sidebands.	

The investigations revealed that O-protonated ε -caprolactam is formed on Brønsted acid sites of H-ZSM-5 and on Q³ silanol groups (Si(OSi)₃OH) of silicalite-1 and siliceous SBA-15. On siliceous catalysts, the adsorption of ε -caprolactam and the formation of O-protonated ε -caprolactam depend on the number of Q³ silanol groups. Further conversion and hydration of O-protonated ε -caprolactam were observed exclusively on Brønsted acidic H-ZSM-5 zeolite. ¹³C MAS NMR spectroscopy was utilized to study the conversion of the additive methanol. On silicalite-1 and H-ZSM-5, hydrocarbons were formed and deposited at increasing reaction temperatures. Furthermore, formation of isopropylamine was observed on silicalite-1 as a result of the reaction of isobutane and hydroxyl amine, which is a by-product of the Beckmann rearrangement. Water formed via the dehydration of methanol on H-ZSM-5 promotes the conversion of O-protonated ε -caprolactam into non- or O-protonated ε -aminocapric acid. On the siliceous SBA-15, no conversion of methanol was found.

Acknowledgements	References
Financial support of this project by Deutsche	[1] V.R.R. Marthala, Y. Jiang, J. Huang, W. Wang, R. Gläser, M. Hunger, J. Am. Chem. Soc. 128 (2006) 14812-
Forschungsgemeinschaft and Fonds der	14813.
Chemischen Industrie is gratefully	[2] A.B. Fernández, I. Lezcano-Gonzalez, M. Boronat, T. Blasco, A. Corma, <i>J. Catal.</i> 249 (2007) 116-119.
acknowledged.	[3] NNMR Predictor & dB 9.0, Advanced Chemistry Development, Inc.: Toronto, Ontario, Canada.