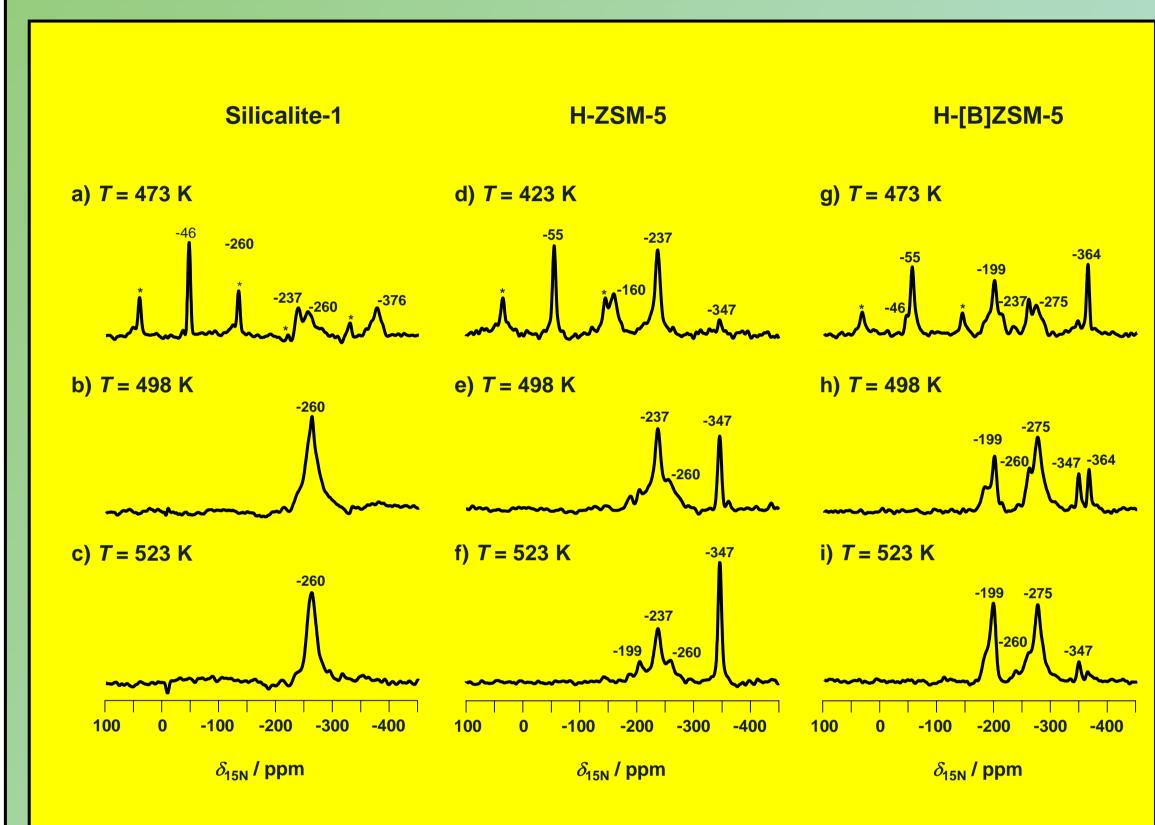


Beckmann rearrangement of ¹⁵N-cyclohexanone oxime to *ɛ*-caprolactam on silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy

V. R. Reddy Marthala, Wei Wang, Roger Glaeser, and Michael Hunger Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany


Introduction

Vapor phase Beckmann rearrangement of cyclohexanone oxime to *ɛ*-caprolactam on solid acid catalysts has received increasing interest as an environmentally benign process. Many investigations reveal that silicalite-1 and H-[B]ZSM-5 are highly active and selective as catalysts in this reaction. However, until now, the mechanism of the conversion of cyclohexanaone oxime to *ɛ*-caprolactam on the surface sites of solid catalysts is a matter of controversial discussions. Recently, the possible reaction mechanism of the vapor-phase Beckmann rearrangement of acetophenone oxime on zeolites beta has been studied by solid-state ¹³C and ¹⁵N MAS NMR spectroscopy and compared with theoretical calculations [1]. In our work, we present first solid-state NMR evidence for the formation of protonated and non-protonated reactant and product molecules, intermediates, and by-products during the vapour phase Beckmann rearrangement of ¹⁵N-enriched cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5, which are characterized by surface hydroxyl groups of different nature and with different acid strengths. In addition, the conversion of cyclohexanone oxime-0¹¹ over zeolite H-ZSM-5 has also been studied by solid-state ¹H MAS NMR spectroscopy.

Experimental Section

Solid-state ¹⁵N CP/MAS and ¹H MAS NMR spectra were recorded on a Bruker MSL 400 spectrometer using 7 mm and 4 mm MAS probes with the sample spinning rates of ca. 3.5 and 8.5 kHz, and at resonance frequencies of 40.53 and 400.1 MHz, respectively. ¹⁵N CP/MAS NMR spectra were obtained with a contact period of 5 ms and a recycle delay of 2 s. Between 1600 (H-ZSM-5) and 40000 (silicalite-1) decays were accumulated for each ¹⁵N CP/MAS NMR spectrum. All ¹⁵N MAS NMR spectra were referenced to nitromethane (0.0 ppm) by calibrating to ¹⁵N-enriched pyridine (-62.0 ppm).¹H MAS NMR spectra were recorded after single pulse excitation with a pulse length of 2.1 µs, repetition time of 10 s, and an accumulation number of 400.

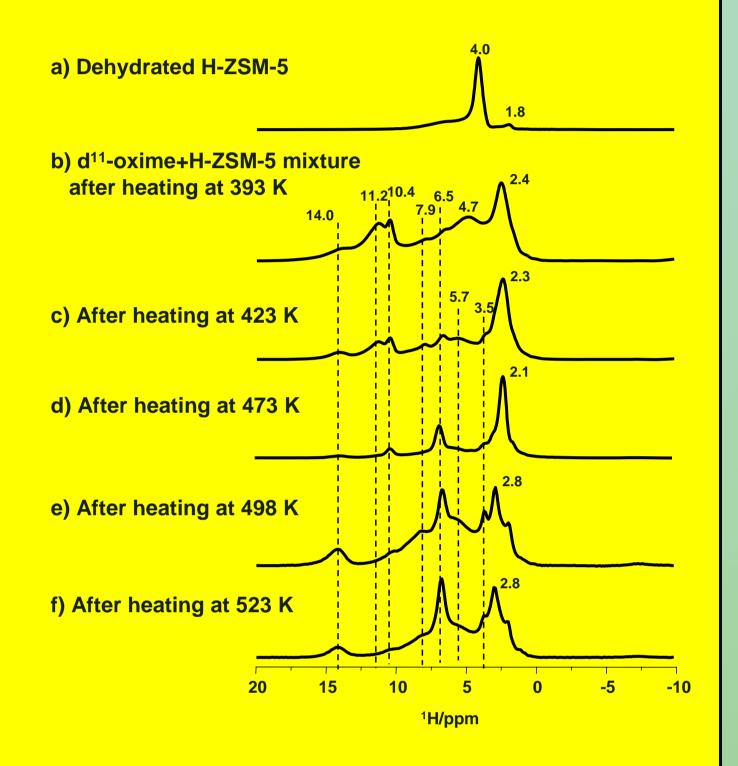
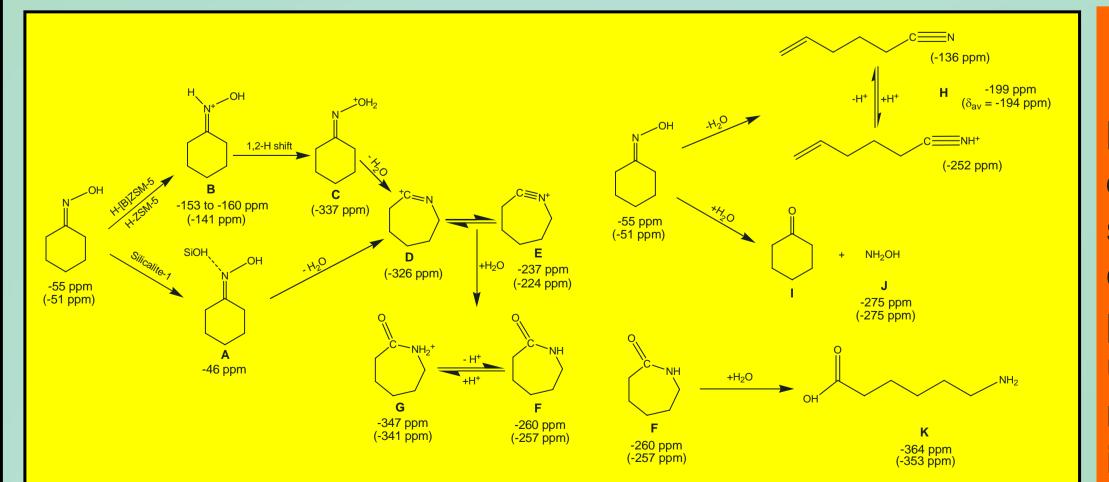

Results and Discussion

Figure 1. ¹⁵N CP/MAS NMR spectra recorded at room temperature after conversion of ¹⁵N-cyclohexanone oxime on silicalite-1 (left), H-ZSM-5 (middle), and H-[B]ZSM-5

> Fig. 1 shows ¹⁵N CP/MAS NMR spectra recorded upon the conversion of ¹⁵N-cyclohexanone oxime to *ε*-caprolactam by stepwise heating of the physical mixtures of the reactant and the MFI-type catalysts at different reaction temperatures [2], while, Fig. 2 shows the ¹H MAS NMR spectra of dehydrated zeolite H-ZSM-5, and H-ZSM-5 loaded with cyclohexanone oxime-d¹¹ and heated at temperatures between 393 and 523 K. The signals in dehydrated zeolite H-ZSM-5 at 1.8 and 4.0 ppm are assigned to SiOH and SiOH[AI] groups, respectively (Fig. 2a).

➢ The signal at -55 ppm in Figs. 1d and 1g is due to unconverted ¹⁵N-cyclohexanone oxime [3], while the corresponding ¹H MAS NMR signal of cyclohexanone oxime-d¹¹ adsorbed on H-ZSM-5 and heated at 393 and 423 K occurs at 11.2 ppm (Figs. 2b-2c) [3]. The broad signal in the range of

Figure 2. ¹H MAS NMR spectra of (a) dehydrated zeolite H-ZSM-5, and mixtures of (b-f) cyclohexanone oxime-d¹¹ and H-ZSM-5 after


(right). The reaction temperatures are indicated in the Figure. Asterisks denote	2.1-2.8 ppm is due to ring protons of reactant and	heating at different reaction temperatures. The
spinning sidebands.	product molecules (Figs. 2b-2f) [3].	reaction temperatures are indicated in the Figure.

> The ¹⁵N CP/MAS NMR signals at -46 ppm in Figs. 1a and 1g and at -160 ppm in Fig. 1d are assigned to H-bonded and N-protonated oximes [1, 3], respectively (Scheme 1). These signal assignments are further supported by the ¹H MAS NMR spectrum shown in Fig. 2. The H-bonded oxime, which is adsorbed on SiOH groups, is indicated by the signal at 10.4 ppm, while the signal at 14.0 ppm indicates the formation of N-protonated oxime on SiOH[AI] groups of zeolite H-ZSM-5.

Upon heating of the mixtures of ¹⁵N-cyclohexanone oxime and the zeolites at 423 to 523 K, nitrilium ions appeared at -237 ppm (Figs. 1a, 1d-1f, and 1g) [3], which are intermediates of the Beckmann rearrangement of cyclohexanone oxime (Scheme 1). The corresponding ¹H MAS NMR signal appeared at 3.5 ppm, when the mixture of cyclohexanone oxime-d¹¹ and zeolite H-ZSM-5 was heated at reaction temperatures between 423 to 523 K (Figs. 2c-2f).

Se-caprolactam, the final product of Beckmann rearrangement of cyclohexanone oxime, causes the ¹⁵N CP/MAS NMR signal at -260 ppm occurring in Figs. 1a-1c, 1e, 1f, and 1g-1i. In the case of zeolites H-ZSM-5 and H-[B]ZSM-5, due to the existence of bridging hydroxyl groups, the protonated form of ε-caprolactam occurs and causes the signal at -347 ppm (Figs. 1d-1f, 1h, and 1i). Similarly, formation of non-protonated and protonated ε-caprolactam was observed by ¹H MAS NMR spectroscopy (Figs. 2b-2f), when the mixture of cyclohexanone oxime-d¹¹ and H-ZSM-5 was heated at 423 to 523 K. The ¹H MAS NMR signals 7.9 and 6.5 ppm are assigned to non-protonated and protonated *ε*-caprolactam, respectively [3].

Additional ¹⁵N CP/MAS NMR signals at -376 ppm (Fig. 1a), -199 ppm (Figs. 1f, and 1g-1i), -275 ppm (Figs. 1g-1i), and -364 ppm (Figs. 1g and 1h) are due to by-products, such as amine, partially protonated 5-cyano-1-penetene, hydroxylamine, and *e*-aminocapric acid [3], respectively. These by-products are formed by dehydration and hydration reactions (Scheme 2). In the case of Beckmann rearrangement of cyclohexanone oxime-d¹¹ over zeolite H-ZSM-5, a ¹H MAS NMR signal at 5.7 ppm represents partially protonated 5-cyano-1-penetene[3], a by-product of the Beckmann rearrangement.

Conclusions

In summary, this work is the first solid-state NMR study of the Beckmann rearrangement of ¹⁵Nenriched cyclohexanone oxime on zeolite catalysts with surface OH groups of different acid

Scheme 1. Reaction mechanism of the Beckmann rearrangement of cyclohexanone oxime to ε -caprolactam over MFI-type catalysts.

Scheme 2. Formation of byproducts in the Beckmann rearrangement of cyclohexanone oxime over H-[B]ZSM-5 and H-ZSM-5 catalysts. strength (silicalite-1 < H-[B]ZSM-5 < H-ZSM-5). Depending on the acid strength of the catalytically active surface OH groups, the reactant cyclohexanone oxime and the reaction product *e*-caprolactam exist in the non-protonated or protonated state. In all zeolite catalysts under study, nitrilium ions occur as intermediates of the vapor-phase Beckmann rearrangement causing a ¹⁵N CP/MAS NMR signal at -237 ppm. In zeolite H-ZSM-5, the nitrilium ions were observed also upon heating at 498 and 523 K, which may be due to a stabilizing effect of the strong Brønsted acid sites in this catalyst. The formation of a number of by-products was observed as a result of the dehydration and hydrolysis of the reactant cyclohexanone oxime and of the reaction product *e*-caprolactam. In addition, ¹H MAS NMR studies of the conversion of cyclohexanone oxime-d¹¹ over zeolite H-ZSM-5 also reveal the formation of protonated reactants, protonated products, nitrilium ion, and by-products.

Acknowledgements

References

FinancialsupportofthisprojectbyDeutsche[1] A. B. Fernández et al., Angew. Chem. 117 (2005) 2422.ForschungsgemeinschaftandFondsderChemischen[2] V. R. R. Marthala et al., J. Am. Chem. Soc. 128 (2006) 14812.Industrie is gratefully acknowledged.[3] NNMR and HNMR Predictor & dB 9.0, Advanced Chemistry Development, Inc., USA.