
University of  Stuttgart
Institute of 

Chemical Technology

Effect of Hydrothermal Treatments on the 
Acidity of Zeolites Y Investigated by 

Quantitative Solid-State NMR Spectroscopy 

Michael Hunger

Institute of Chemical Technology
University of Stuttgart, Germany



Hydrothermal Treatment of Zeolite Y
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• hydrothermal treatment:
- dealumination of the 

framework
- formation of extra-

framework species
- dehydroxylation of SiOHAl 

groups
- formation of defect sites 

(e.g. SiOH) 

H



Investigation of following topics:

Aims of the Recent Study 

• advantages and limitations of NMR spectroscopy for the study

of hydrothermally treated zeolites

• coordination change of framework aluminum atoms

• nature of extra-framework aluminum atoms formed by 

hydrothermal treatments

• healing of the zeolite framework

• quantitative determination of the hydroxyl coverage as 

a function of the hydrothermal treatment



Sample Preparation and 
Experimental Techniques



Sample Preparation

commercial
zeolite Na-Y 
(nSi/nAl = 2.6)

NH4-Y (exchange degree of 92 %)
ammonium-
exchange

hydrothermal treatment at 475oC
flowing nitrogen (100 ml/min) 

water pressures of 3.4 to 94.3 kPa

dealuminated zeolite H-Y 
denoted as Y-T(475)

T:  water bath temperature

non-hydrated samples were characterized
by 29Si and 1H MAS NMR

rehydrated samples were characterized by
AES/ICP, XRD, 29Si, 27Al, and 1H MAS NMR



Experimental Techniques

• XRD: Siemens D5000, determination of the cell constant, application of   

an internal standard, calculation of of the framework aluminum content 

• 29Si MAS NMR: MSL400 NMR spectrometer, determination of the

framework nSi/nAl ratio of non-hydrated and hydrated samples

• 2D 27Al 3QMAS NMR: Avance 500WB NMR spectrometer,

determination of the quadrupole parameter and coordination of

framework and extra-framework aluminum atoms

• 1D 27Al MAS NMR: MSL400 NMR (and Avance 750WB NMR)

spectrometer, investigation of the distribution of aluminum atoms

• 1H MAS NMR: MSL400 NMR spectrometer, quantitative determination of

SiOH, AlOH, and SiOHAl groups of non-hydrated and dehydrated samples



Quantitative Investigation of 
Hydrothermally Treated and Rehydrated 

Zeolites H-Y



Determination of the Framework Aluminum 
Content by X-Ray Diffraction
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H. Fichtner-Schmittler et al., Z. Phys. Chem. 271 (1990) 69-79



Determination of the Framework Aluminum 
Content by 29Si MAS NMR
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• signals of Q4 silicon atoms:
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27Al MQMAS NMR Studies of Hydrated Zeolites Y

Y-98(475)

AlIVa

AlIVb

AlVI

δ27Al / ppm

• two signals of tetrahedrally  

coordinated aluminum

species

signal AlIVa:

δiso= 61.6 ppm     

νQ = 360 kHz

signal AlIVb:        

δiso= 61.4 ppm    

νQ = 1005 kHz

signal AlVI:        

δiso= 3.3 ppm      

νQ = 315 kHz



27Al MAS NMR Studies of Hydrated Zeolites Y
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• total number of aluminum atoms
obtained by AES/ICP

• simulation of the MAS NMR
spectra using the quadrupole
parameters obtained by MQMAS
NMR 

• correction of the relative intensities
by the method of Massiot et al. *

*:  D. Massiot et al., J. Magn. Reson. 90 
(1990) 231-242.



Comparison of Experimental Data  

sample XRD 29Si MAS NMR 27Al MAS NMR

nAl / u.c. nAl / u.c. nAl / u.c.
Y-(475) 52.3 51.8 52.0

Y-40(475) 42.0 49.4 41.4

Y-80(475) 37.5 42.9 32.2

Y-90(475) 31.6 33.9 25.6

Y-98(475) 29.6 31.0 20.3

• framework aluminum contents obtained by complementary methods 
(accuracy + 5%):

significant lower framework aluminum contents 
determined by 27Al MAS NMR

_



Effect of Ammonia  Adsorption on
Hydrothermally Treated Zeolites H-Y

adsorption of ammonia causes a transformation of 
threefold to tetrahedrally coordinated aluminum   

Y-90(475)

Y-98(475)a

Y-90(475)a

Y-98(475)

AlIVa

AlIVb
AlVI

27Al MAS NMR

δ27Al / ppm

+ NH3

100          50             0            -50 100          50             0            -50



Comparison of Experimental Data  

sample XRD 29Si MAS NMR
27Al MAS 

NMR
27Al MAS 

NMR
nAl / u.c. nAl / u.c. nAl / u.c. nAl / u.c.

+ NH3

Y-40(475) 42.0 49.4 41.4 49.8

Y-80(475) 37.5 42.9 32.2 39.3

Y-90(475) 31.6 33.9 25.6 32.4

Y-98(475) 29.6 31.0 20.3 28.2

• framework aluminum contents obtained by complementary methods
(accuracy + 5%):

comparable numbers of tetrahedrally coordinated 
framework aluminum atoms after loading of NH3

_



Investigation of the Hydroxyl Coverage

• local structures of hydroxyl groups:3.7 / SiOHAllc

Y(475)

10                         5                         0                       -5δ1H / ppm

10                        5                        0                      -5δ1H / ppm

4.8 / SiOHAlsc

2.6 / AlOH

1.8 / SiOH

1H MAS NMR

Y-98(475)

2.6 / AlOH3.7 / SiOHAllc

4.8 / SiOHAlsc

1.8 / SiOH

0.6 / AlOH

Ox Si
O

OO

H

T

T T

Al
O

OO
T

T T

SiOHAllc: bridging OH groups in 
large cages (supercages), x = 1

SiOHAlsc: bridging OH groups in 
sodalite cages, x = 2 and 3

O
Si

O

OO

H

T

T T

SiOH: defect OH 
groups

AlOH: unknown



Comparison of Experimental Data  

• numbers of aluminum atoms and hydroxyl groups determined by
27Al MAS NMR and 1H MAS NMR spectroscopy (accuracy + 5%):

coordination change is accompanied by a significant 
increase of the concentration of SiOHAl groups 

sample AlIV
nAl  / u.c.

SiOHAl
nOH / u.c.

SiOH
nOH  / u.c.

AlOH
nOH / u.c.

Y-80(475) 32.2 14.4 1.5 12.1
Y-80(475)a 39.3 22.8 1.1 11.4
Y-98(475) 20.3 18.5 2.0 15.6

Y-98(475)a 28.2 25.6 1.7 18.4

Y-98(475)w 24.7 19.9 4.1 11.1

Y-98(475)wa 30.6 30.2 1.3 13.8

_



Reversible Coordination Change of 
Framework Aluminum Atoms
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• proposed mechanism: 

pathway II may be the dominating mechanism of the coordination 
change of framework aluminum atoms in zeolites Y  
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Quantitative Investigations of 
Steamed and Non-Hydrated Zeolites H-Y



MAS NMR Studies of Non-Hydrated Zeolites H-Y
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• all 29Si MAS NMR signals are due  
to Q4 species

Si(2Si,2Al)



Comparison of Hydrated and 
Non-Hydrated Zeolites H-Y

non-hydrated: solid lines
hydrated: dotted lines

Y-26(475)
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• weak dealumination: 

high-field shift of the 29Si MAS 

NMR signals of non-hydrated 

samples by 2 to 4 ppm

• strong dealumination: 

only small differences of the 
29Si MAS NMR signals of the 

Q4 silicon species  Si(2Si,2Al)   



Effect of Multivalent Cations on the  
29Si MAS NMR Spectra of Zeolites Y 

ca. 3 ppm

29Si MAS NMR of lanthanum-exchanged
zeolites Y *

δ29Si / ppm

• zeolites La,Na-Y: 

lanthanum cations induce a high-field 

shift of the 29Si MAS NMR signals of 

by ca. 3 ppm

• non-hydrated zeolites Y-T(475): 

high-field shifts of the 29Si MAS NMR

signals of the Q4  species  may 

indicate the presence of cationic

extra-aluminum species (Al3+, 

Al(OH)2+ …)

*:  J.A. van Bokhoven et al., J. Phys. Chem. B 104 
(2000) 6743-6754.



Influence of the Hydrothermal Treatment
on the Hydroxyl Coverage

number of OH groups as a function 
of the water vapor pressure • weak treatment:     

similar dehydroxylation of SiOHAl 
groups in supercages and sodalite 
cages

• strong treatment:     
stronger dehydroxylation of SiOHAl 
groups in sodalite cages,
significant increase of AlOH groups
at 2.6 ppm

• whole range:
only weak formation of defect SiOH
groups at 1.8 ppm and AlOH groups
at 0.6 ppm  0 20 40 60 80 100
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Comparison of Experimental Data  

sample nframework Al
/u.c.

nextra-framework Al
/u.c.

nSiOHAl 
/u.c. x nAlOH 

/u.c.
Y-60(475)a 46.2 5.8 28.6 +2.3 6.7
Y-70(475)a 41.9 10.1 28.3 +0.9 11.9
Y-80(475)a 34.3 17.7 20.9 +0.5 13.7

Y-90(475)a 31.2 20.8 16.8 +0.5 10.3

Y-94(475)a 31.8 20.2 16.8 +0.5 10.3

Y-98(475)a 30.0 22.0 17.3 +0.4 12.0

• mean charge per extra-framework aluminum atom in non-hydrated
zeolites Y: x = (nframework Al - nSiOHAl – nNa)/(nextra-framework Al)

strong dealumination:  {nAl : nAlOH : nx . Al}extra～ 2 : 1: 1 {[Al2O2(OH)]+}n



Nature of Extra-Framework Aluminum
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• low concentration of defect SiOH groups in strongly dealuminated 
zeolites supports a healing of the framework

• occurrence of highly charged extra-framework aluminum cations after 
weak hydrothermal treatment

• mean number of positive charges of extra-framework aluminum species
decreases with increasing strength of the hydrothermal treatment 

• hydrothermally induced formation of threefold coordinated framework
alumium atoms which are transformed to tetrahedrally coordinated
framework atoms by adsorption of ammonia  

• concentration of bridging OH groups is effected by:
- dealumination of the zeolite framework 
- coordination change of framework aluminum atoms 
- formation of cationic extra-framework aluminum species 

Summary 
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• removal of aluminum from the zeolite framework was first
reported in 1964 by Barrer and Makki

• in 1967, McDaniel and Maher reported a method to increase the
thermal stability of zeolite Y:   Ultrastablilization procedure

• in 1980, Lohse et al. proposed a migration of silicon atoms
leading to an occupation of empty tetrahedral sites and to a 
healing of the zeolite framework

• methods of dealumination:
- dealumination with acids (HCl, HNO3, H4EDTA)
- dealumination with silicon tetrachloride
- hydrothermal treatment of the zeolite framework

Dealumination of Zeolites



Kerr, 1974:

Proposed Dealumination Mechanisms I

G.T. Kerr, in: W.M. Meier, J.B. Uytterhoeven (Eds.), Molecular Sieves, Advances in 

Chemistry Series, Vol. 121, American Chemical Society, Washington, 1974, p. 219-229.



Kuehl, 1977:

Proposed Dealumination Mechanisms II

G.H. Kuehl, J. Phys. Chem. Solids 38 (1977) 1259-1269.
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