Institute of Chemical Technology

Effect of Hydrothermal Treatments on the Acidity of Zeolites Y Investigated by Quantitative Solid-State NMR Spectroscopy

Michael Hunger

Institute of Chemical Technology University of Stuttgart, Germany

Hydrothermal Treatment of Zeolite Y

• faujasite structure:

Broensted-acid sites:

bridging OH group (SiOHAI)

- hydrothermal treatment:
 - dealumination of the framework
 - formation of extraframework species
 - dehydroxylation of SiOHAI groups
 - formation of defect sites (e.g. SiOH)

Investigation of following topics:

- advantages and limitations of NMR spectroscopy for the study of hydrothermally treated zeolites
- coordination change of framework aluminum atoms
- nature of extra-framework aluminum atoms formed by hydrothermal treatments
- healing of the zeolite framework
- quantitative determination of the hydroxyl coverage as a function of the hydrothermal treatment

Sample Preparation and Experimental Techniques

Sample Preparation

commercial zeolite Na-Y $(n_{\rm Si}/n_{\rm Al} = 2.6)$

ammoniumexchange

NH₄-Y (exchange degree of 92 %)

hydrothermal treatment at 475°C

flowing nitrogen (100 ml/min) water pressures of 3.4 to 94.3 kPa dealuminated zeolite H-Y denoted as Y-*T*(475) *T*: water bath temperature

rehydrated samples were characterized by AES/ICP, XRD, ²⁹Si, ²⁷AI, and ¹H MAS NMR

non-hydrated samples were characterized by ²⁹Si and ¹H MAS NMR

- **XRD**: Siemens D5000, determination of the cell constant, application of an internal standard, calculation of of the framework aluminum content
- ²⁹Si MAS NMR: MSL400 NMR spectrometer, determination of the framework n_{Si}/n_{AI} ratio of non-hydrated and hydrated samples
- 2D ²⁷AI 3QMAS NMR: Avance 500WB NMR spectrometer, determination of the quadrupole parameter and coordination of framework and extra-framework aluminum atoms
- 1D ²⁷AI MAS NMR: MSL400 NMR (and Avance 750WB NMR) spectrometer, investigation of the distribution of aluminum atoms
- ¹H MAS NMR: MSL400 NMR spectrometer, quantitative determination of SiOH, AIOH, and SiOHAI groups of non-hydrated and dehydrated samples

Quantitative Investigation of Hydrothermally Treated and Rehydrated Zeolites H-Y

Determination of the Framework Aluminum Content by X-Ray Diffraction

H. Fichtner-Schmittler et al., Z. Phys. Chem. 271 (1990) 69-79

Determination of the Framework Aluminum Content by ²⁹Si MAS NMR

signals of Q⁴ silicon atoms:

-90 ppm	Si(1Si,3Al)		
-95 ppm	Si(2Si,2Al)		
-101 ppm	Si(3Si,1AI)		
-107 ppm	Si(4Si)		

 $n_{\text{Si}} / n_{\text{Al}} = \sum_{n=0}^{4} I_{\text{Si}(n\text{Al})} / \sum_{n=0}^{4} \frac{n}{4} \cdot I_{\text{Si}(n\text{Al})}$

²⁷AI MQMAS NMR Studies of Hydrated Zeolites Y

 two signals of tetrahedrally coordinated aluminum species signal Al^{IVa}: δ_{iso} = 61.6 ppm $v_{\rm Q}$ = 360 kHz signal Al^{IVb}: δ_{iso} = 61.4 ppm $v_{\rm Q} = 1005 \text{ kHz}$ signal Al^{VI}: δ_{iso} = 3.3 ppm $v_{Q} = 315 \text{ kHz}$

²⁷AI MAS NMR Studies of Hydrated Zeolites Y

- total number of aluminum atoms obtained by AES/ICP
- simulation of the MAS NMR spectra using the quadrupole parameters obtained by MQMAS NMR
- correction of the relative intensities by the method of Massiot et al. *

*: D. Massiot et al., J. Magn. Reson. 90 (1990) 231-242.

 framework aluminum contents obtained by complementary methods (accuracy <u>+</u> 5%):

sample	XRD	²⁹ Si MAS NMR	²⁷ AI MAS NMR
	<i>n</i> _{Al} / u.c.	<i>n</i> _{AI} / u.c.	<i>п</i> _{АI} / u.c.
Y-(475)	52.3	51.8	52.0
Y-40(475)	42.0	49.4	41.4
Y-80(475)	37.5	42.9	32.2
Y-90(475)	31.6	33.9	25.6
Y-98(475)	29.6	31.0	20.3

 significant lower framework aluminum contents determined by ²⁷AI MAS NMR

Effect of Ammonia Adsorption on Hydrothermally Treated Zeolites H-Y

adsorption of ammonia causes a transformation of threefold to tetrahedrally coordinated aluminum

 framework aluminum contents obtained by complementary methods (accuracy <u>+</u> 5%):

sample	XRD	²⁹ Si MAS NMR	²⁷ AI MAS NMR	²⁷ AI MAS NMR
	<i>n</i> _{Al} / u.c.	n _{AI} / u.c.	<i>n</i> _{AI} / u.c.	<i>n</i> _{AI} / u.c.
				+ NH ₃
Y-40(475)	42.0	49.4	41.4	49.8
Y-80(475)	37.5	42.9	32.2	39.3
Y-90(475)	31.6	33.9	25.6	32.4
Y-98(475)	29.6	31.0	20.3	28.2

comparable numbers of tetrahedrally coordinated framework aluminum atoms after loading of NH₃

Investigation of the Hydroxyl Coverage

• local structures of hydroxyl groups:

SiOHAl_{Ic}: bridging OH groups in large cages (supercages), x = 1

SiOHAl_{sc}: bridging OH groups in sodalite cages, x = 2 and 3

SiOH: defect OH groups

AIOH: unknown

 numbers of aluminum atoms and hydroxyl groups determined by ²⁷AI MAS NMR and ¹H MAS NMR spectroscopy (accuracy ± 5%):

sample	Al ^{IV} n _{Al} / u.c.	SiOHAI n _{OH} / u.c.	SiOH n _{OH} / u.c.	AIOH n _{OH} / u.c.
Y-80(475)	32.2	14.4	1.5	12.1
Y-80(475)a	39.3	22.8	1.1	11.4
Y-98(475)	20.3	18.5	2.0	15.6
Y-98(475)a	28.2	25.6	1.7	18.4
Y-98(475)w	24.7	19.9	4.1	11.1
Y-98(475)wa	30.6	30.2	1.3	13.8

coordination change is accompanied by a significant increase of the concentration of SiOHAI groups

Reversible Coordination Change of Framework Aluminum Atoms

• proposed mechanism:

pathway II may be the dominating mechanism of the coordination change of framework aluminum atoms in zeolites Y

Quantitative Investigations of Steamed and Non-Hydrated Zeolites H-Y

MAS NMR Studies of Non-Hydrated Zeolites H-Y

 all ²⁹Si MAS NMR signals are due to Q⁴ species

Comparison of Hydrated and Non-Hydrated Zeolites H-Y

- weak dealumination: high-field shift of the ²⁹Si MAS NMR signals of non-hydrated samples by 2 to 4 ppm
- strong dealumination: only small differences of the ²⁹Si MAS NMR signals of the Q⁴ silicon species Si(2Si,2Al)

Effect of Multivalent Cations on the ²⁹Si MAS NMR Spectra of Zeolites Y

zeolites La,Na-Y:

lanthanum cations induce a high-field shift of the ²⁹Si MAS NMR signals of by ca. 3 ppm

- non-hydrated zeolites Y-T(475): high-field shifts of the ²⁹Si MAS NMR signals of the Q⁴ species may indicate the presence of cationic extra-aluminum species (Al³⁺, Al(OH)²⁺...)
- *: J.A. van Bokhoven et al., J. Phys. Chem. B 104 (2000) 6743-6754.

Influence of the Hydrothermal Treatment on the Hydroxyl Coverage

• weak treatment:

similar dehydroxylation of SiOHAI groups in supercages and sodalite cages

strong treatment:
stronger dehydroxylation of SiOHAI groups in sodalite cages,
significant increase of AIOH groups at 2.6 ppm

whole range:

only weak formation of defect SiOH groups at 1.8 ppm and AIOH groups at 0.6 ppm

• mean charge per extra-framework aluminum atom in non-hydrated zeolites Y: $x = (n_{\text{framework AI}} - n_{\text{SiOHAI}} - n_{\text{Na}})/(n_{\text{extra-framework AI}})$

sample	n _{framework Al} /U.C.	n _{extra-framework Al} /U.C.	n _{siOHAI} /u.c.	x	n _{AIOH} /u.c.
Y-60(475)a	46.2	5.8	28.6	+2.3	6.7
Y-70(475)a	41.9	10.1	28.3	+0.9	11.9
Y-80(475)a	34.3	17.7	20.9	+0.5	13.7
Y-90(475)a	31.2	20.8	16.8	+0.5	10.3
Y-94(475)a	31.8	20.2	16.8	+0.5	10.3
Y-98(475)a	30.0	22.0	17.3	+0.4	12.0

strong dealumination: $\{n_{AI} : n_{AIOH} : n_{x \cdot AI}\}_{extra} \sim 2 : 1 : 1 \rightarrow \{[AI_2O_2(OH)]^+\}_n$

Nature of Extra-Framework Aluminum

- Iow concentration of defect SiOH groups in strongly dealuminated zeolites supports a healing of the framework
- occurrence of highly charged extra-framework aluminum cations after weak hydrothermal treatment
- mean number of positive charges of extra-framework aluminum species decreases with increasing strength of the hydrothermal treatment
- hydrothermally induced formation of threefold coordinated framework alumium atoms which are transformed to tetrahedrally coordinated framework atoms by adsorption of ammonia
- concentration of bridging OH groups is effected by:
 - dealumination of the zeolite framework
 - coordination change of framework aluminum atoms
 - formation of cationic extra-framework aluminum species

Acknowledgements

Jens Weitkamp

Stefan Altwasser Jian Jiao Wei Wang Andreas Buchholz

Stefan Steuernagel

German Research Foundation

Volkswagen Foundation Hannover

Max Buchner Research Foundation

Fonds der Chemischen Industrie

- removal of aluminum from the zeolite framework was first reported in 1964 by *Barrer* and *Makki*
- in 1967, *McDaniel* and *Maher* reported a method to increase the thermal stability of zeolite Y: Ultrastablilization procedure
- in 1980, *Lohse et al.* proposed a migration of silicon atoms leading to an occupation of empty tetrahedral sites and to a healing of the zeolite framework
- methods of dealumination:
 - dealumination with acids (HCI, HNO₃, H₄EDTA)
 - dealumination with silicon tetrachloride
 - hydrothermal treatment of the zeolite framework

Proposed Dealumination Mechanisms I

G.T. Kerr, in: W.M. Meier, J.B. Uytterhoeven (Eds.), Molecular Sieves, Advances in Chemistry Series, Vol. 121, American Chemical Society, Washington, 1974, p. 219-229.

Proposed Dealumination Mechanisms II

G.H. Kuehl, J. Phys. Chem. Solids 38 (1977) 1259-1269.