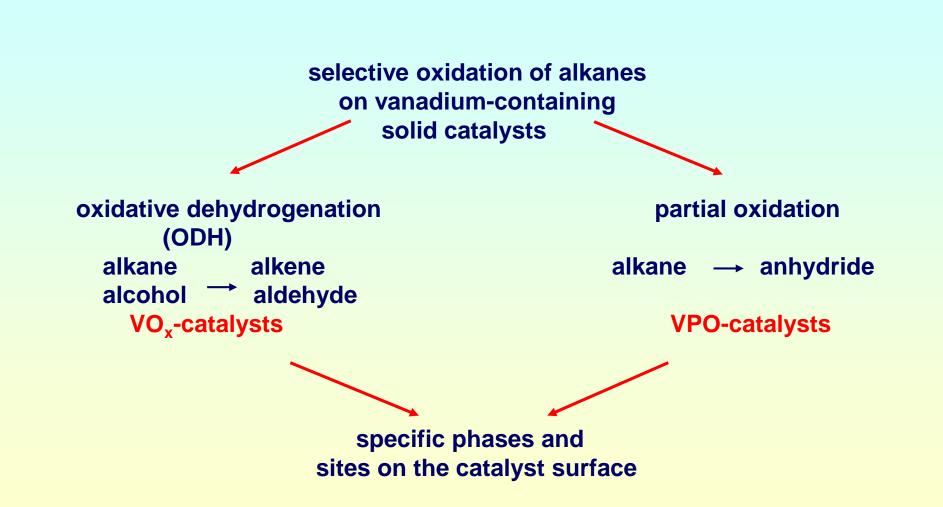

Institute of Chemical Technology


Vanadium phosphates on mesoporous supports: Model catalysts for spectroscopic studies of the selective oxidation of alkanes

Michael Hunger

Seminar of SFB 706

January 17, 2008

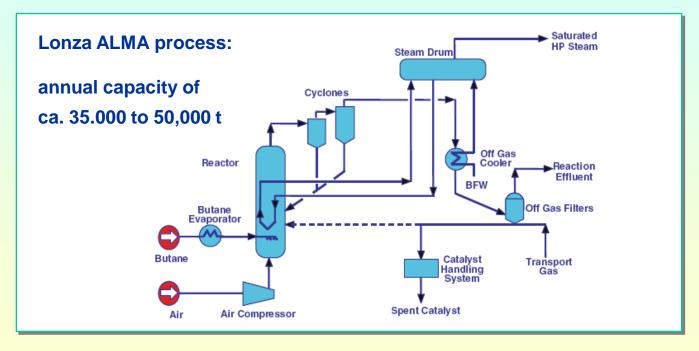
Introduction

Selective oxidation of n-butane to maleic anhydride (MA)

• reaction:

$$CH_3-CH_2-CH_2-CH_3+3\frac{1}{2}O_2 \xrightarrow{VPO} O = \bigcirc O + 4H_2O$$

- possible reaction steps are 1-butene, 1,3-butadiene, dihydrofuran, and furan [1]
- MA is an important intermediate for polyester resin production [1]
- catalyst:
 - VPO catalysts are prepared by activation of vanadyl hydrogenphosphate hemihydrate VOHPO₄· 0.5 H₂O in n-butane/air flow [2]:

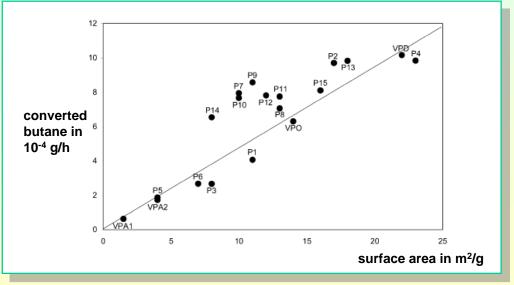

reducing atm. \longrightarrow (VO)₂P₂O₇ (vanadyl pyrophosphate) oxidizing atm. \longrightarrow VOPO₄ (vanadyl orthophosphate phases)

- activity increases sharply for P / V ratio reaching > 1
 - [1] M. Hävecker et al., J. Phys. Chem. B, 107 (2003) 4587.
 - [2] R.A. van Santen, Handbook of Heterogeneous Catalysis, Springer, 1997, p. 2244.

Oxidation of n-butane to maleic anhydride (MA)

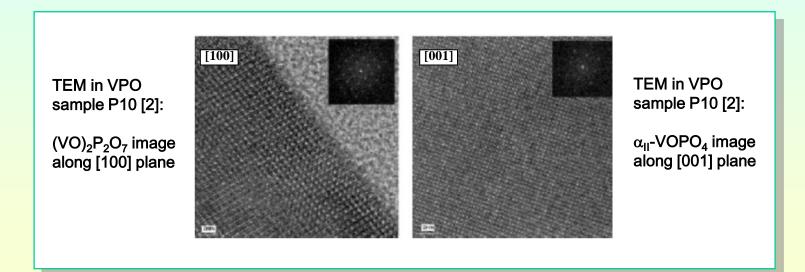
• industrial applications:

- fixed-bed processes by Scientific Design, Huntsman, and BASF
- fluidized-bed processes by Lonza, BP, and Mitsubishi
- transported-bed process by DuPont


process performance:

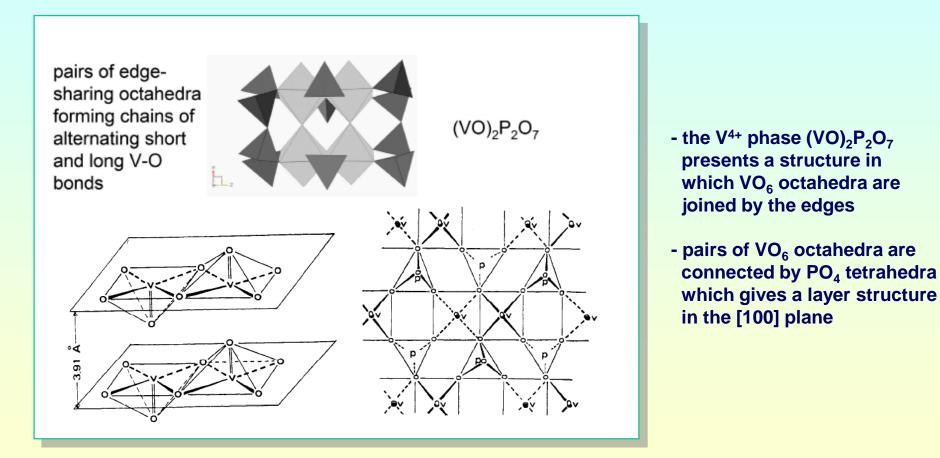
- 53 to 65 % yield to MA with n-butane conversion of maximum 86 %

N. Ballarina et al., Topics in Catalysis 38 (2006) 147.

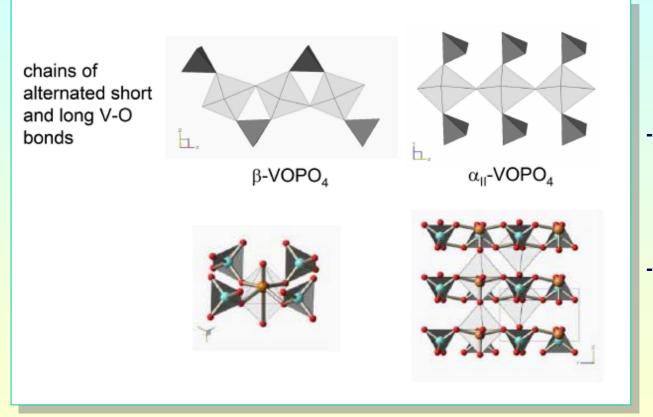

Reasons for limited activity

- local catalyst overheating [1]:
 - consecutive reactions of combustion (CO, CO₂) decrease the selectivity to MA for conversion over 70-80 %
 - application of thermally conducting supports
- commercial catalysts have surface areas of 20-30 m²g⁻¹ [2]:
 - since conversion correlates with surface area, procedures for the preparation of high-area catalysts are required, e.g. on mesoporous supports
 - higher surface areas may allow lower reaction temperatures leading to higher MA selectivities

• considerable controversy concerning the nature of the active component:

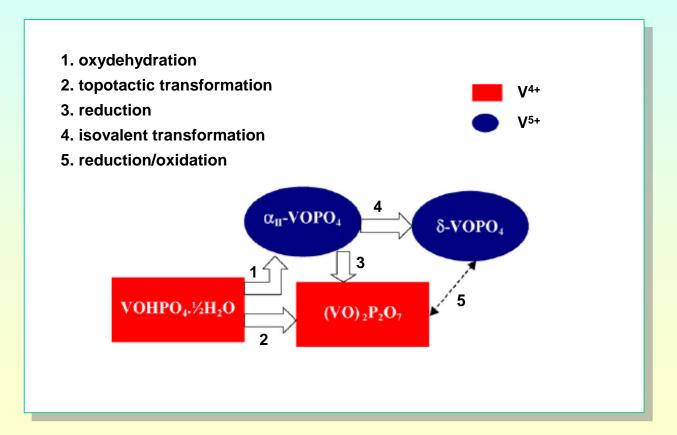

- [100] planes of highly crystalline (VO)₂P₂O₇ (V⁴⁺) [1]
- V⁵⁺ defect sites and phases in the above-mentioned crystallites [2]
- crystallites with (VO)₂P₂O₇ in [100] planes and VOPO₄ along [001] planes [2]

- MA selectivity depends on concentration of V⁵⁺ sites [3, 4]

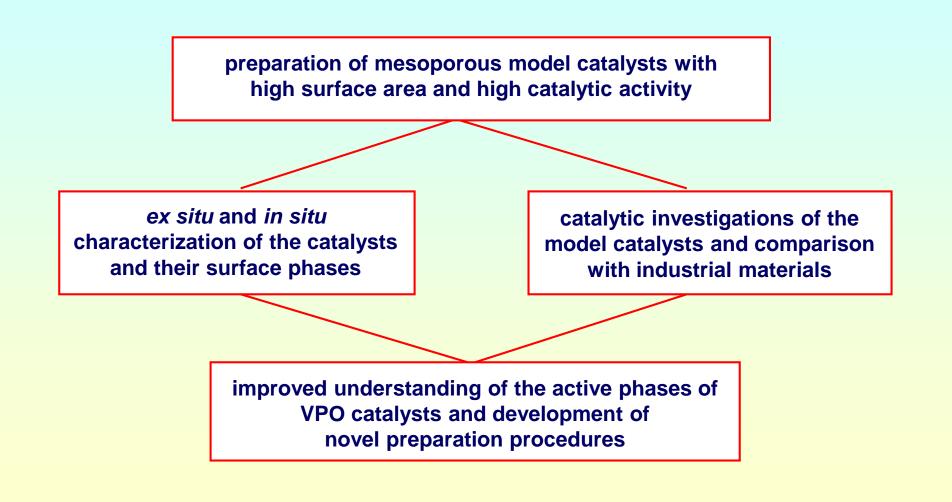

[1] V.V. Guliants et al., Catal. Today 28 (1996) 275; ([2] G.J. Hutchings, J. Mater. Chem. 14 (2004) 3385;
[3] G.W. Coulston et al., Science 275 (1997) 191; [4] G. Bignardi et al., J. Mol. Catal. A 244 (2006) 244.

Structure of (VO)₂P₂O₇ phases

M.-G. Willinger, PhD Thesis, University of Berlin, 2005 G. Busca et al., J. Phys. Chem. 90 (1986) 1337.


Structure of VOPO₄ phases

- the V⁵⁺ phases like vanadyl phosphates VOPO₄ are formed by single octahedron linked to the orthophosphate group
- each equatorial oxygen of VO₆ shares a corner of one PO₄


M.-G. Willinger, PhD Thesis, University of Berlin, 2005.

- suggested transformations of the VOHPO₄ \cdot 0.5 H₂O precursor during the formation of the final VPO catalyst and the reaction cycle:

C.J. Kiely, G.J. Hutchings, Appl. Catal. A: General 325 (2007) 194.

Aims of the suggested project

- development of new procedures for the preparation of supported and compact mesoporous VPO catalysts:
 - mesoporous supports with high surface area (SBA-15, MCM-41 etc.)
 - procedures leading to supported/compact (VO)₂P₂O₇ (V⁴⁺)
 - procedures leading to supported/compact VOPO₄ phases (V⁵⁺)
 - procedures leading to mixtures of V⁴⁺ and V⁵⁺ phases
 - preparation of VPO/support systems with different VPO contents
- characterization of the mesoporous supports by REM (TEM), XRD, nitrogen adsorption:
 - morphology of supports and compact mesoporous VPO materials
 - crystalline VPO phases and particle sizes
 - specific surface area before and after loading of the supports with VPO phases
- catalytic studies (n-butane conversion) of the VPO/support systems:
 - comparison of the various VPO/support systems, if possible, also with an industrial catalyst

• spectroscopic studies:

- effect of the preparation procedure on the nature and contents of different vanadium species

- VPO/support interactions
- surface phases involved in the adsorption and conversion of reactants
- adsorbate complexes formed by reactants on the catalyst surface
- conversion of n-butane on the most active catalyst systems
- suggested co-operations with groups of SFB 706:
 - preparation and characterization of mesoporous supports,
 Dr. V. Urlacher
 - ESR and Raman spectroscopic studies of vanadium species, Prof. Dr. E. Roduner
 - quantum-chemical studies of surface complexes formed by adsorption of n-butane at the surface sites of supported VPO compounds, PD Dr. G. Rauhut
 - access to TEM equipment (?)

• NMR methods:

- ¹H and ²⁹Si MAS NMR investigations of the surface OH groups and support material and solid-state ¹³C NMR studies of reactants
- ⁵¹V MAS NMR investigations of V⁵⁺ species: Isotropic chemical shift δ_{iso} , shift anisotropy $\Delta\delta$, quadrupole coupling constant C_{QCC}, and asymmetry parameter η

Material	δ _{iso}	Δδ	η_{δ}	C _{QCC}	ηα	References
α_{I} -VOPO ₄	-691 ppm	880 ppm	0.00	1.55 MHz	0.55	[1]
α_{II} -VOPO ₄	-755 ppm	992 ppm	0.08	0.63 MHz	0.09	[2]
β -VOPO 4	-735 ppm	818 ppm	0.05	1.45 MHz	0.44	[2]
γ -VOPO ₄ /1	-755 ppm	955 ppm	0.15	0.55 MHz	0.68	[2]
γ -VOPO ₄ /2	-739 ppm	942 ppm	0.07	1.32 MHz	0.55	[2]

- $\Delta\delta$ values of 900 to 1300 ppm indicate distorted VO₆ octahedra

[1] O.B. Lapina et al., J. Mol. Catal. A: Chem. 162 (2000) 381.
[2] R. Siegel et al., Magn. Reson. Chem. 42 (2004) 1022.

Contribution of NMR spectroscopy

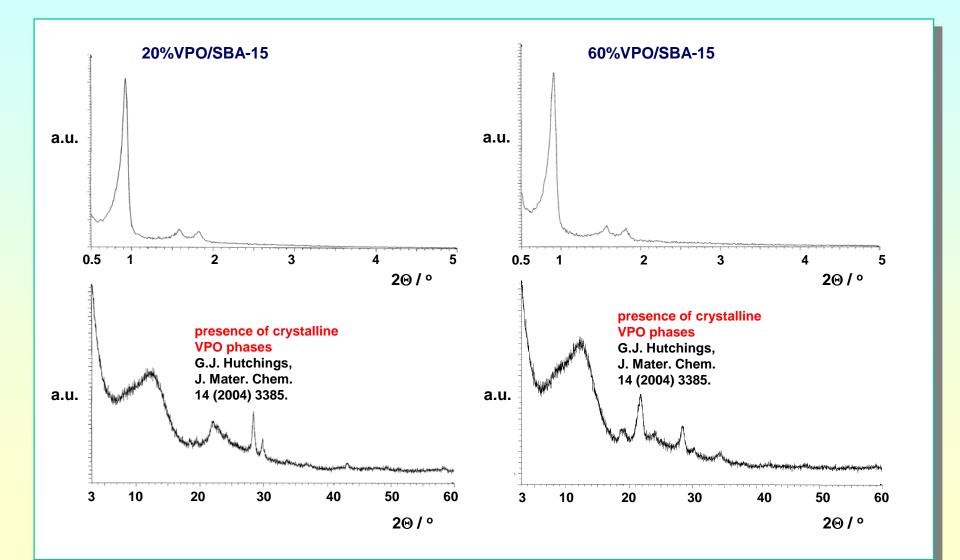
• NMR methods:

- ³¹P spin-echo NMR studies of phosphorous atoms at vanadium V⁵⁺, V⁴⁺, and V⁵⁺ species existing upon different preparation steps and before and after application of VPO catalysts:

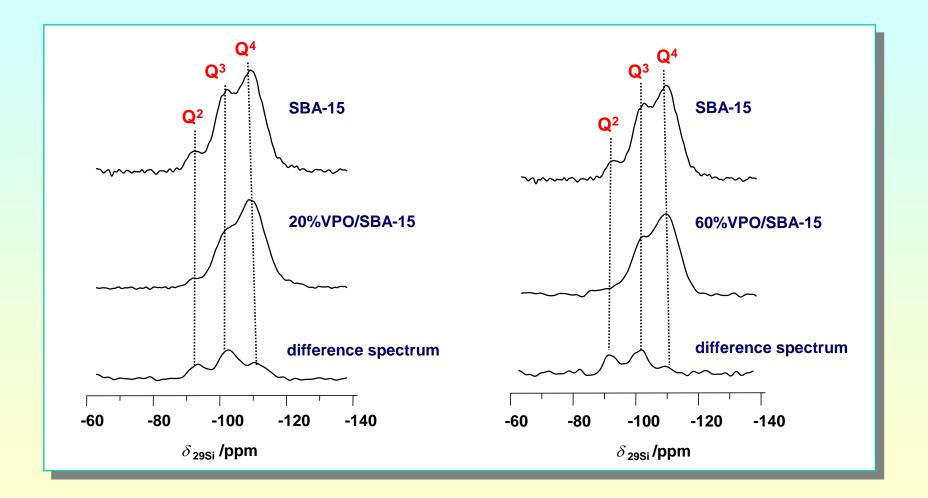
³¹ P spin-echo NMR signals	Phosphorous species and phases	References
-20 to 5 ppm	P at V ⁵⁺ in VOPO ₄ phases	[1]
200-1500 ppm	P at V ⁴⁺ /V ⁵⁺ dimers in poorly crystalline $(VO)_2P_2O_7$	[1]
1625 ppm	P at V ⁴⁺ in VOHPO ₄ · 0.5 H ₂ O	[2]
2300 ppm	P at V ⁴⁺ in VO(H ₂ PO ₄) ₂	[2]
2400 ppm	P at V ⁴⁺ in poorly crystalline (VO) ₂ P ₂ O ₇	[1]
2600 ppm	P at V ⁴⁺ in crystalline (VO) ₂ P ₂ O ₇	[2]
4650 ppm	P at V ³⁺ in VPO ₄	[2]

- ³¹P MAS NMR studies of phosphorous atoms at vanadium V⁵⁺ species in VOPO₄ phases:

³¹ P MAS NMR signals	V ⁵⁺ phases	References	
-20.5 ppm	α _{II} -VOPO ₄	[3]	
-11.5 ppm	β-VOPO ₄	[3]	
-21.2 ppm, -17.3 ppm (ca. 1:1) -14.9 ppm (very weak shoulder)	γ-VOPO ₄	[3]	
-17.6 ppm, -8.4 ppm (ca. 1:1) -6.5 ppm (very weak shoulder)	δ-VOPO4	[3]	
2.7 to 3.6 ppm	α _l -VOPO ₄	[4, 5, 6]	
3.9 ppm	VOPO ₄ · n H ₂ O	[4]	

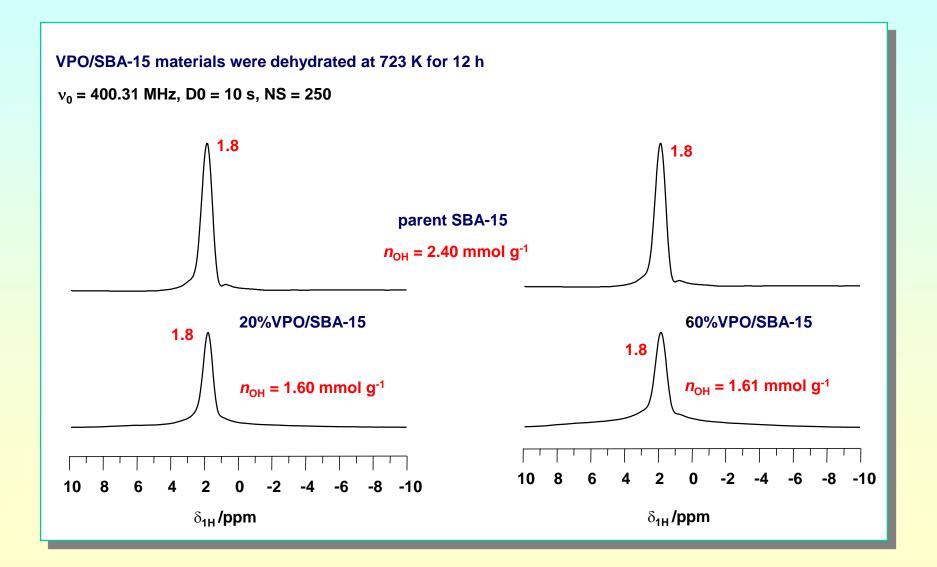

- [1] M.T. Sananes-Schulz et al., J. Catal. 166 (1997) 388.
- [2] M.T. Sananes, A. Tuel, Solid State Nuclear Magn. Reson., 6 (1996) 157.
- [3] F. Ben Abdelouahab et al., J. Catal. 134 (1992) 151.
- [4] S.A. Ennaciri et al., Eur. J. Solid State Inorg. Chem. 30 (1993) 227.
- [5] K.E. Birkeland et al., J. Phys. Chem. B 101 (1997) 6895.
- [6] K. Ait-Lachgar et al., J. Catal. 177 (1998) 224.

- preparation of VPO/SBA-15 catalysts according to Ref. [1]:
 - siliceous SBA-15 is added to isobutyl/benzyl alcohols (1 : 1) with V_2O_5 , PEG 6.000 and H_3PO_4
 - VPO loadings of 20 to 60 wt.%
 - activation in a flow of 1.5 % n-butane, 17.5 % $\rm O_2$ and balance $\rm N_2$ (100 ml/min) at 673 K for 15 h
- ICP-AES and nitrogen adsorption:

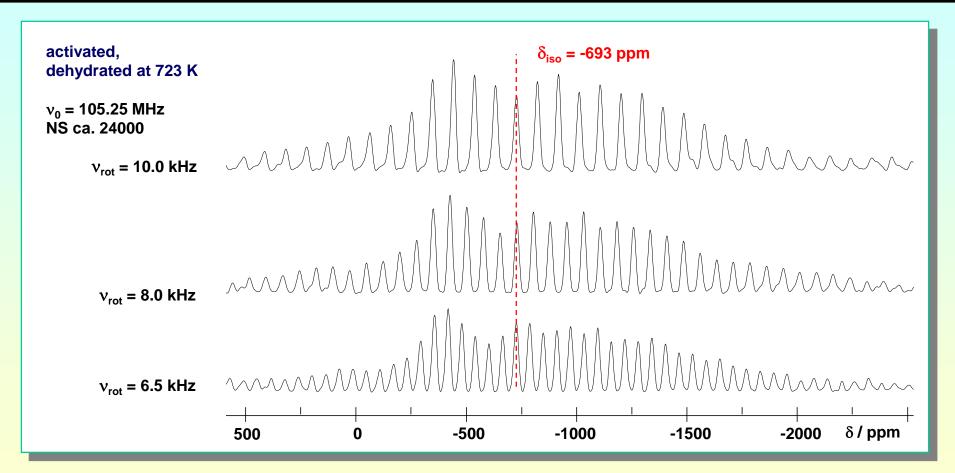

Samples	P/V	BET surface m² / g	Pore volume cm³ / g
SBA-15	-	1164	1.25
20%VPO/SBA-15	1.09	662	0.80
60%VPO/SBA-15	1.04	456	0.54

[1] X.-K. Li et al., J. Catal. 238 (2006) 232.

XRD studies of VPO/SBA-15

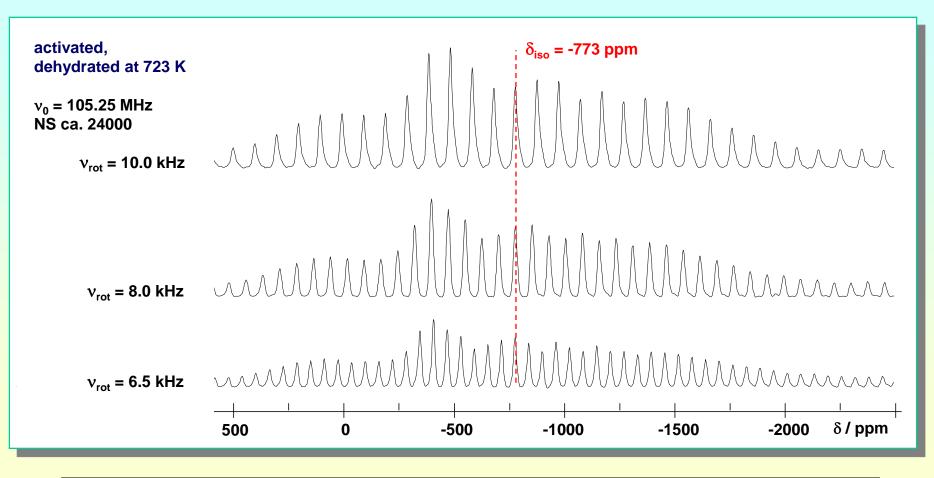


²⁹Si MAS NMR of VPO/SBA-15

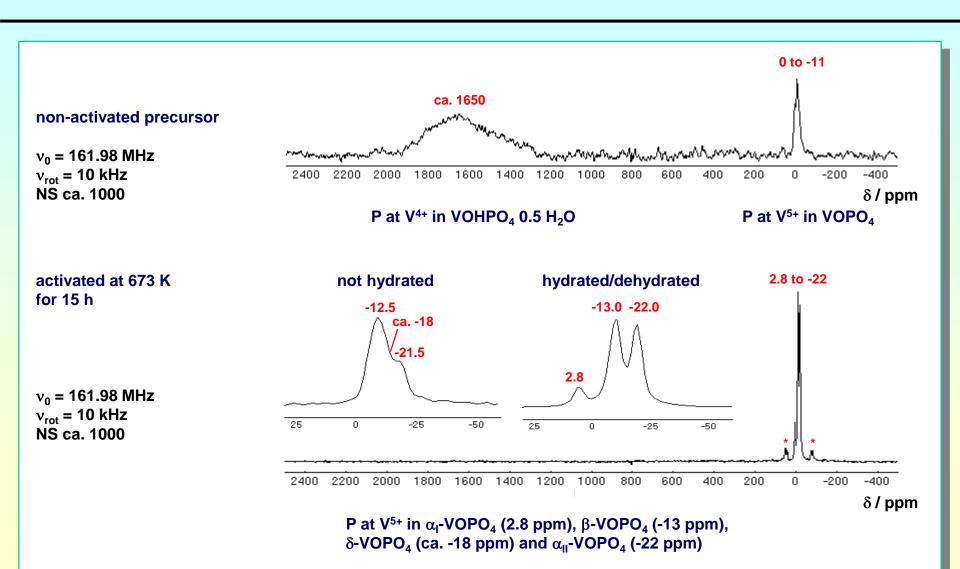


VPO compounds cover the mesoporous support and are not separate phases

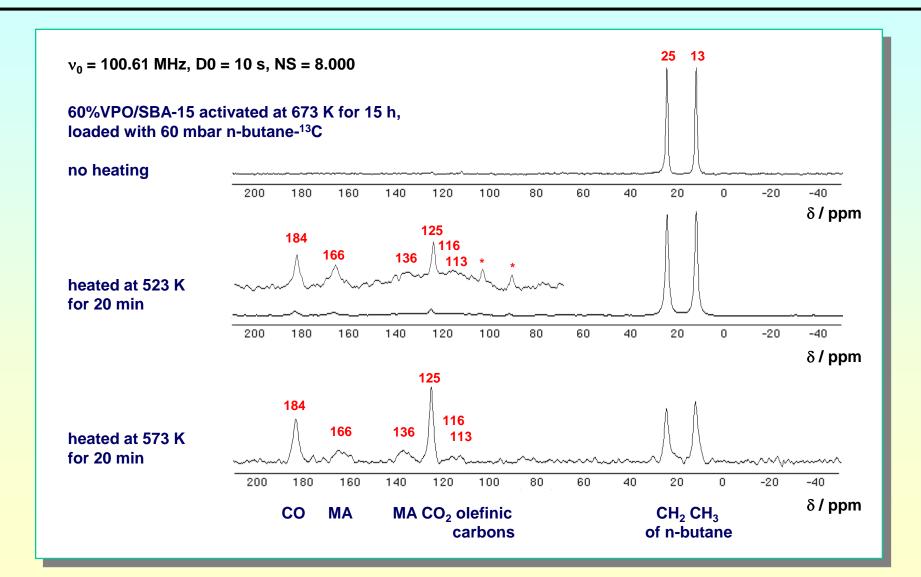
¹H MAS NMR of VPO/SBA-15



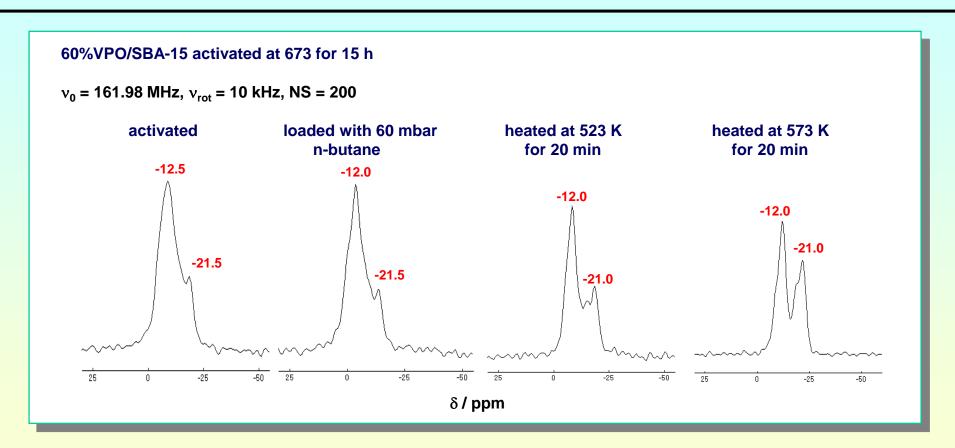
⁵¹V MAS NMR of 20% VPO/SBA-15


Material	δ _{iso}	Δδ	η_{δ}	C _{QCC}	ηα
20%VPO/SBA-15	-693 ppm	-830 ppm	0.07	1.99 MHz	0.71

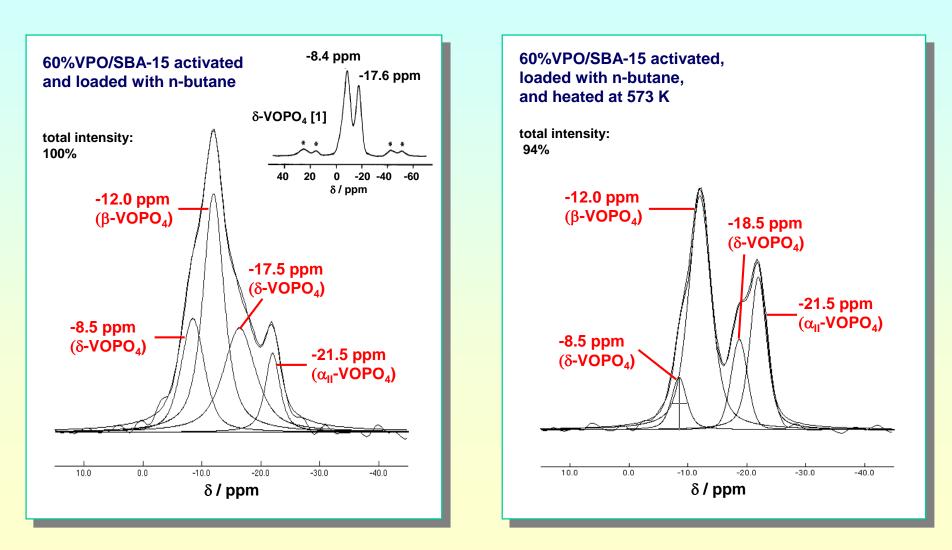
⁵¹V MAS NMR of 60%VPO/SBA-15



Material	δ_{iso}	Δδ	η_{δ}	C _{QCC}	η _Q
60%VPO/SBA-15	-773 ppm	-900 ppm	0.10	1.99 MHz	0.59


³¹P MAS NMR of 60%VPO/SBA-15

¹³C MAS NMR of n-butane on 60%VPO/SBA-15


³¹P MAS NMR of 60%VPO/SBA-15

-21.5 to -21.0 ppm:P at V5+ in α_{II} - and γ -VOPO4-8 and -18 ppm:P at V5+ in δ -VOPO4 \longrightarrow decrease upon conversion of n-butane-11.5 to -12.5 ppm:P at V5+ in β -VOPO4

(β-VOPO₄ is not moisture sensitive, C.J. Kiely et al., J. Catal. 162 (1996) 31)

Simulation of ³¹P MAS NMR spectra

[1] F. Ben Abdelouahab et al., J. Catal. 134 (1992) 151.

- conversion of n-butane to maleic anhydride on VPO catalysts is an important industrial process, however, with limited n-butane conversion and MA yield
- improvement of VPO catalysts requires deeper insight into the nature of active sites and surface phases and the development of novel preparation procedures for the catalyst material
- solid-state NMR spectroscopy is a suitable method for studying VPO materials upon different preparation and activation steps and after catalytic application
- double resonance techniques of NMR spectroscopy allow specific investigations of surface phases containing the adsorption sites of reactant molecules
- combination of NMR (V⁵⁺), ESR (V⁴⁺) and UV/Vis (V³⁺) spectroscopy are complementary tools to gain complete insight into the oxidation states of vanadium in VPO catalysts
- quantum-chemical investigations could be very useful for supporting the interpretation of experimental results and for improving our understanding of the reactant activation on the catalyst surface

Acknowledgements

Yean Sang Ooi preparation of supported VPO materials

Bejoy Thomas NMR studies

Jörg Frey catalytic studies novel VPO materials Deutsche Forschungsgemeinschaft

Alexander von Humboldt foundation

Fonds der Chemischen Industrie

NMR group of the ITC

co-workers:

- 4 PhD students, 1 technician,

experimental equipment:

- solid-state NMR spectrometer Bruker MSL-400,
- modified probes for *in situ* MAS NMR-UV/Vis spectroscopy under flow conditions,
- equipment for catalytic studies (on-line GC, in connection with *in situ* NMR),
- equipment for preparation of solid-state NMR samples under well-defined conditions (vacuum lines, glove box).