
# State of the Art and Applications of In Situ Solid-State NMR Spectroscopy in Heterogeneous Catalysis

**Michael Hunger** 

Institute of Chemical Technology
University of Stuttgart, Germany

**Summer School of EUROMAR 2008** 

# Examples of nuclei accessible for in situ NMR in heterogeneous catalysis



```
<sup>7</sup>Li (3/2, 0.27)
<sup>11</sup>B (3/2, 0.13)
^{17}O (5/2, 1.1 x 10<sup>-5</sup>)
<sup>23</sup>Na (3/2, 9.2 x 10<sup>-2</sup>)
<sup>27</sup>AI (5/2, 0.21)
<sup>29</sup>Si (1/2, 3.7 x 10<sup>-4</sup>)
<sup>31</sup>P (1/2, 6.6 x 10<sup>-2</sup>)
<sup>51</sup>V (7/2, 0.38)
<sup>67</sup>Zn (5/2, 1.2 x 10<sup>-2</sup>)
<sup>71</sup>Ga (3/2, 5.6 x 10<sup>-2</sup>)
<sup>133</sup>Cs (7/2, 4.7 x 10<sup>-2</sup>)
```

isotope (nuclear spin, relative sensitivity in comparison with <sup>1</sup>H)

# Specific problems of NMR on working catalysts

#### magnetization:

$$M_0 = \frac{N \gamma^2 h^2 I (I+1) B_0}{(2\pi)^2 3 k_B T}$$

- minimum number of ca. 10<sup>18</sup>
   spins for <sup>1</sup>H NMR
- decrease of magnetization M<sub>0</sub>
   with increasing temperature T

- rapid chemical exchange of adsorbate complexes at elevated temperatures
- observation times of 10 ms (flow conditions) to hours (batch conditions)
- quenching of signals in the neighborhood of paramagnetic and ferromagnetic sites
- broadening of signals due to solid-state interactions

## Signal broadening in solid-state NMR spectroscopy

Hamiltonians of the solid-state interactions of spins:

$$H_{\text{total}} = H_0 + H_{QI} + H_{DI} + H_{CS} + H_{J}$$

 $H_0$ : Zeeman interaction  $\gamma \cdot h \cdot l_z \cdot B_0$  of nuclear spins I in the external magnetic field  $B_0$   $v_0 \le 10^9 \text{ s}^{-1}$ 

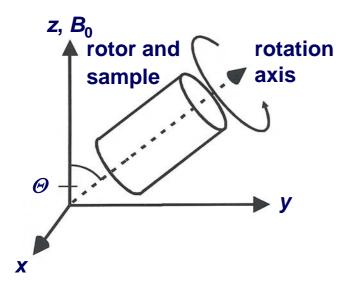
 $H_{QI}$ : interaction of the electric quadrupole moment of the resonating nuclei with the electric field gradient

$$v_{QI} \le 5 \times 10^6 \text{ s}^{-1}$$

 $H_{\rm DI}$ : dipolar interaction with the magnetic dipole moments of nuclei in their vicinity  $v_{\rm DI} \leq 5 \times 10^4 \ {\rm s}^{-1}$ 

 $H_{CS}$ : shielding interaction caused by the electron shell around the resonating nuclei  $v_{CS} \le 5 \times 10^3 \text{ s}^{-1}$ 

 $H_{\rm J}$ : indirect or J-coupling of nuclei via their bond electrons


$$v_{\rm J} \le 5 \times 10^2 {\rm s}^{-1}$$

### Solid-state NMR techniques

#### spin $I = \frac{1}{2}$ :

magic angle spinning (MAS)

$$v_{\text{CSA,DI,1QI}} = f \{3\cos^2 \Theta - 1\} \longrightarrow \Theta = 54.7^{\circ}$$



#### spin $l > \frac{1}{2}$ :

double oriented rotation (DOR)

$$v_{2QI} = f \{35\cos^4\Theta - 30\cos^2\Theta + 3\}$$

$$\Theta = 30.6^{\circ}$$

$$\Theta = 70.1^{\circ}$$

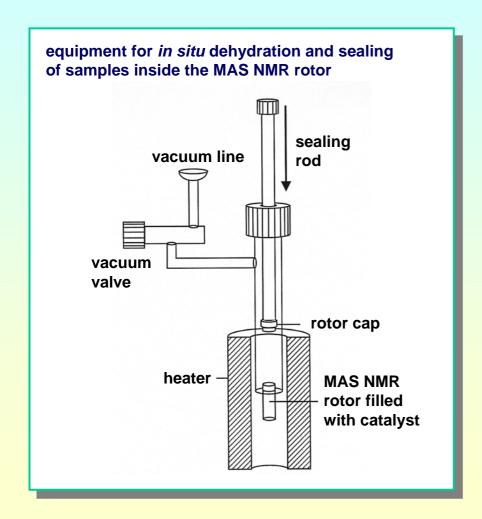
- multiple-quantum MAS NMR (MQMAS)
  - sampling of three- and fivequantum transitions
  - recording of spin-echoes free
     of anisotropic contributions

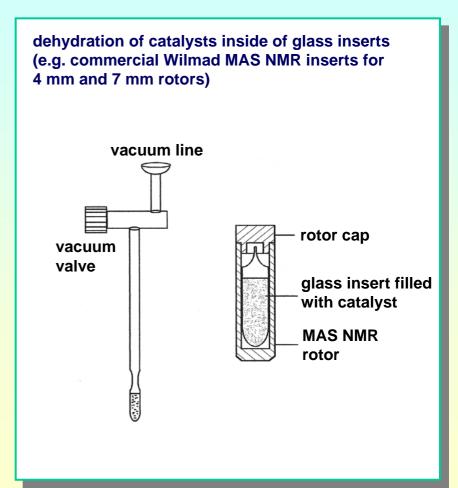
### Experimental approaches

- batch experiments, external reaction
  - sealed samples
  - heating in an external stove
- batch experiments, in situ reaction
  - sealed samples
  - high-temperature solid-stateNMR probes
  - go-and-stop studies using a
     Laser heating system

#### characteristics:

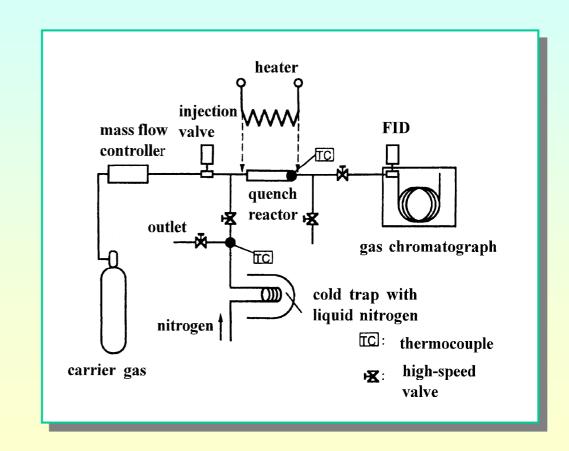
- accessible with commercial equipments
- infinite contact times


- flow experiments, external reaction
  - reaction in an external reactor
  - transfer of the loaded catalysts after quenching the reaction
- flow experiments, in situ reaction
  - continuous injection of reactants into the MAS NMR rotor reactor
  - high-temperature solid-stateNMR probes


#### characteristics:

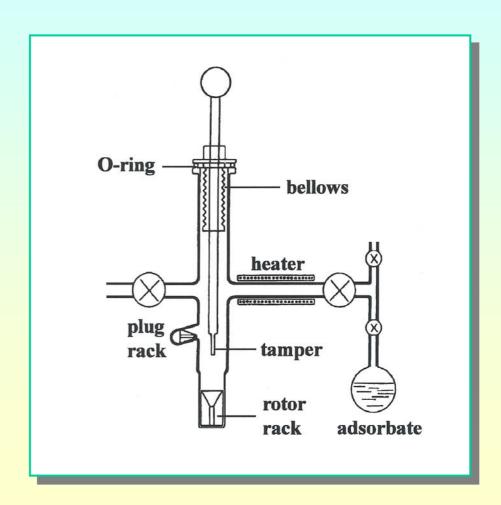
- self-made equipments
- study of reactions under staedy state conditions

Experimental techniques applied for studies under batch and continuous-flow conditions

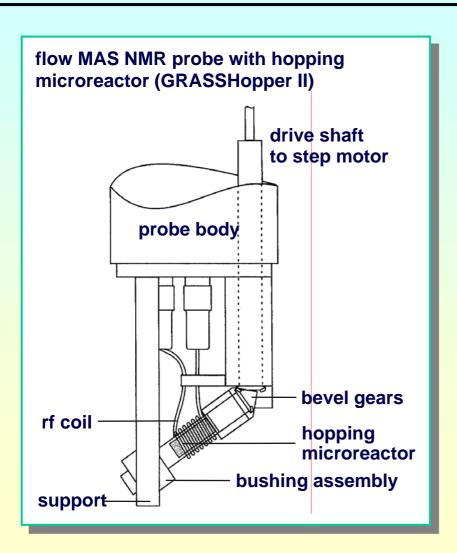

### Handling of dehydrated catalysts under batch conditions

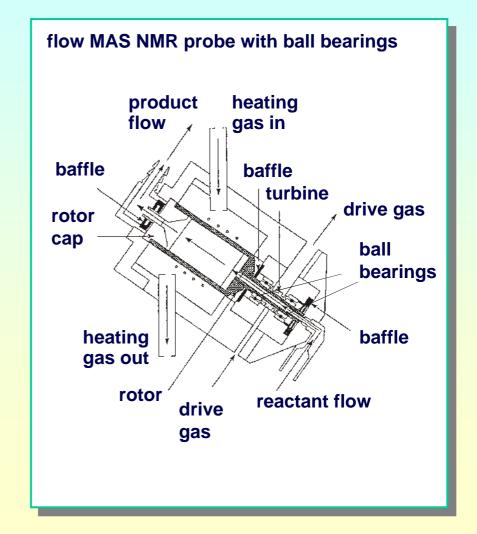




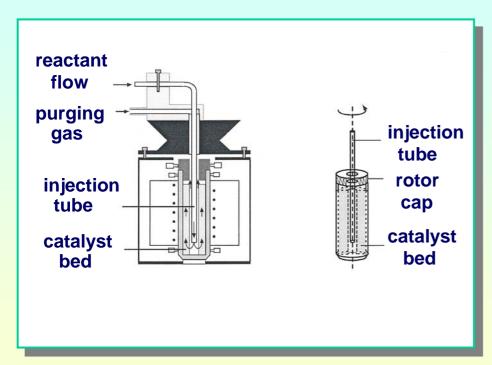

# Go-and-stop experiments using an external reactor

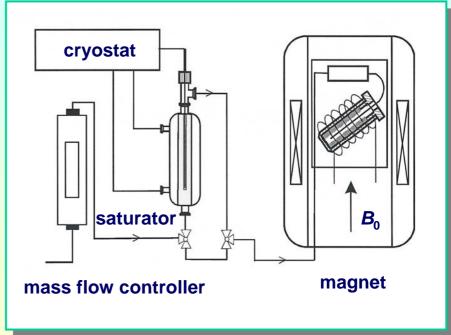
- pulse-quench technique:
  - conversion of reactants in an external fixed-bed reactor
  - rapid stopping of the reaction
     by pre-cooled nitrogen gas
- NMR investigations:
  - transfer of the catalyst loaded with reaction products into an MAS NMR rotor
  - measurements performed at room temperature





# Approach for batch and continuous-flow experiments in an external reactor

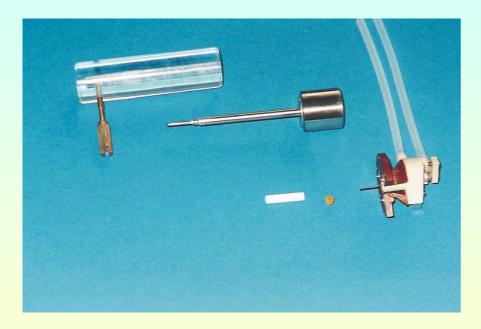
- apparatus for evacuation, loading and catalysis on solid materials in an external reactor
- no contact to air during the transfer of the catalyst material into an MAS NMR rotor
- sealing of the MAS NMR rotor inside the apparatus

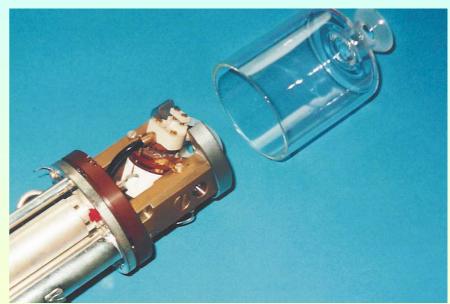




# Approaches for in situ flow MAS NMR spectroscopy



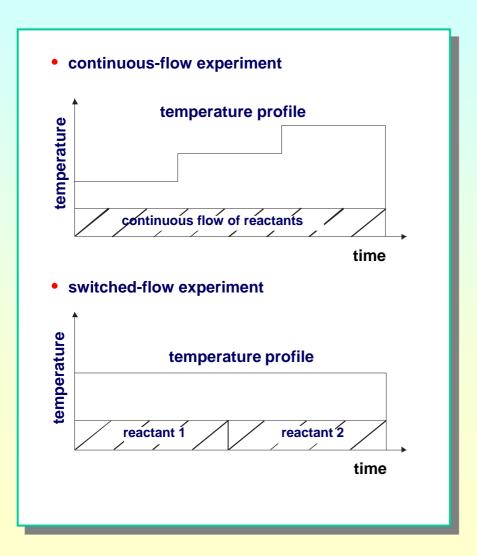



## Continuous-flow (CF) MAS NMR technique



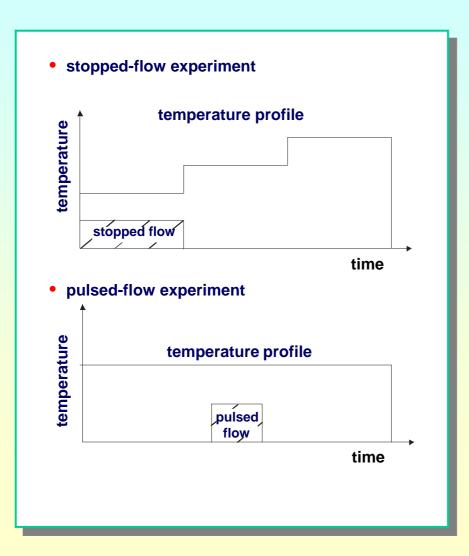



• continuous injection of reactants into a spinning MAS NMR rotor reactor (T < 923 K)


## Continuous-flow (CF) MAS NMR technique



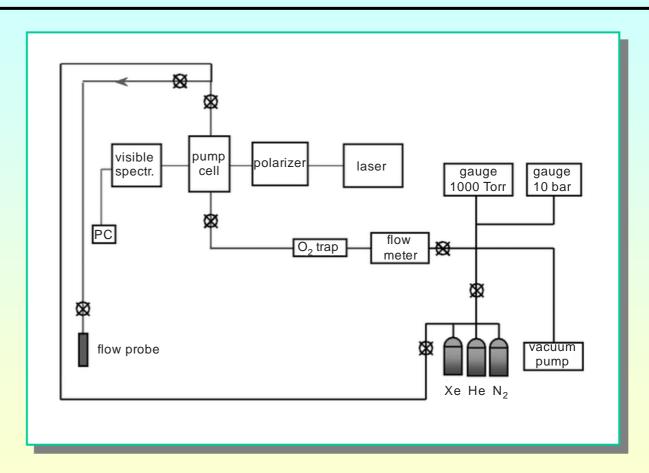



modified 4 mm Bruker MAS NMR probe equipped with an injection system

### Types of flow experiments I

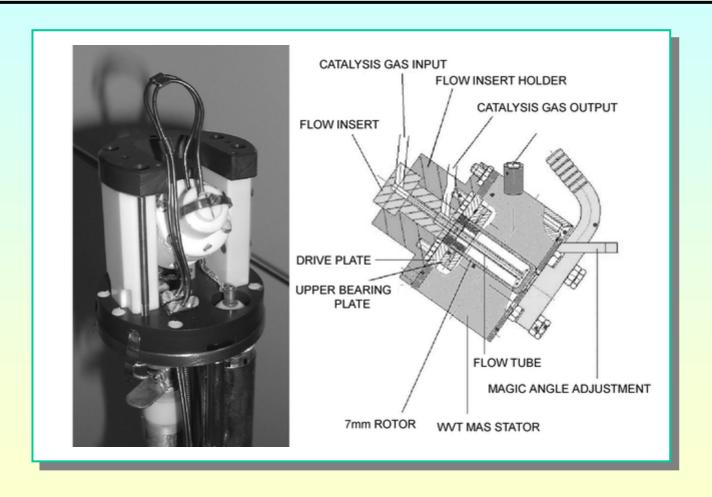


- continuous-flow experiment:
  - study of adsorption or conversion of reactants at constant or different temperatures
  - study of formation of stable deposits of catalyst deactivatrion
- switched-flow experiment:
  - change of isotopic enrichment in reactants
  - study of the response of the composition of reaction products or deposits on the change of reactants


## Types of flow experiments II



- stopped-flow experiment:
  - preparation of intermediates on the catalyst
  - study of the reactivity and conversion of intermediates at constant or different temperatures
- pulsed-flow experiment:
  - study of the time dependence of the conversion of reactants
  - study of the isotopic exchange of reactants at high temperatures

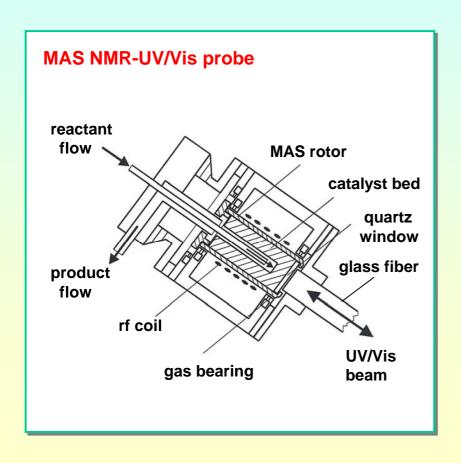

# Flow experiments with laser-polarized xenon

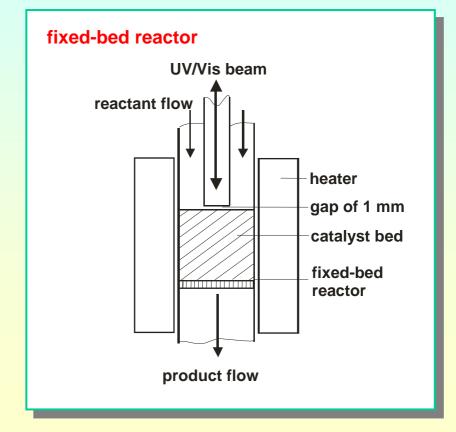
- continuous injection of laser-polarized xenon:
  - optical pumping of the D<sub>1</sub>
     transition (794.7 nm) of
     rubidium
  - spin exchange between excited rubidium atoms and the xenon atoms by gas phase collisions



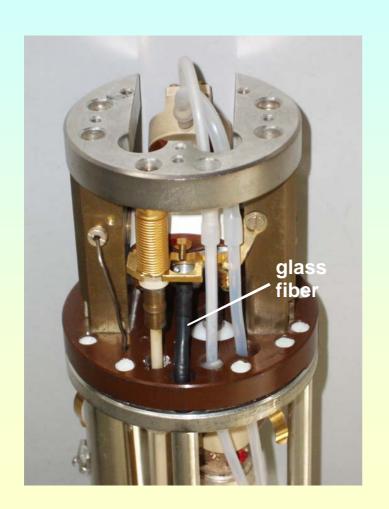
- typical applications:
  - study of the meso- and micropore systems of solid catalyst and adsorbents
  - study of the location of adsorbate complexes upon in situ adsorption of reactants

### CF MAS NMR probe of Bruker BioSpin





MASCAT probe design with 7 mm MAS NMR rotor and temperatures up to 623 K

A. Nossov et al., Phys. Chem. Chem. Phys. 5 (2003) 4479.


#### Technique of MAS NMR-UV/Vis spectroscopy

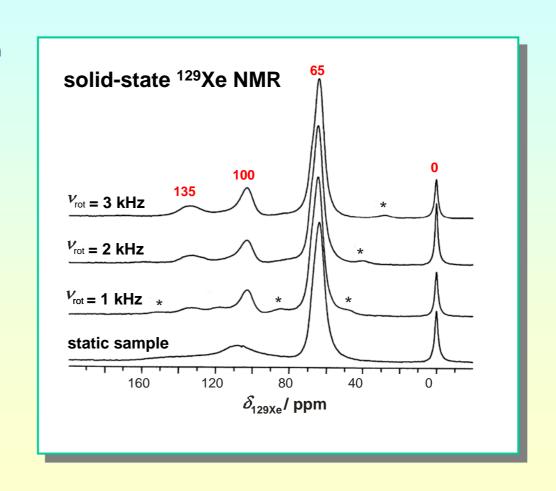
a flow MAS NMR probe (modified 7 mm MAS rotor with quartz glass window)
 was equipped with an UV/Vis glass fiber at the bottom of the MAS stator





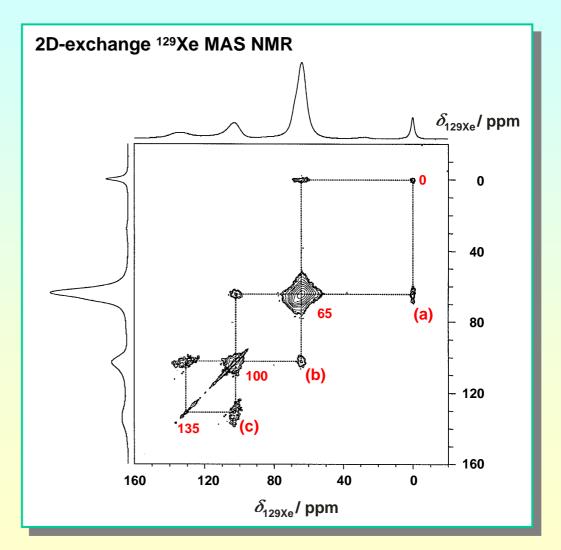
### Technique of in situ flow MAS NMR




7 mm flow Bruker MAS NMR probe equipped with a glass fiber (left) and UV/Vis light source and spectrometer of Avantes (bottom)

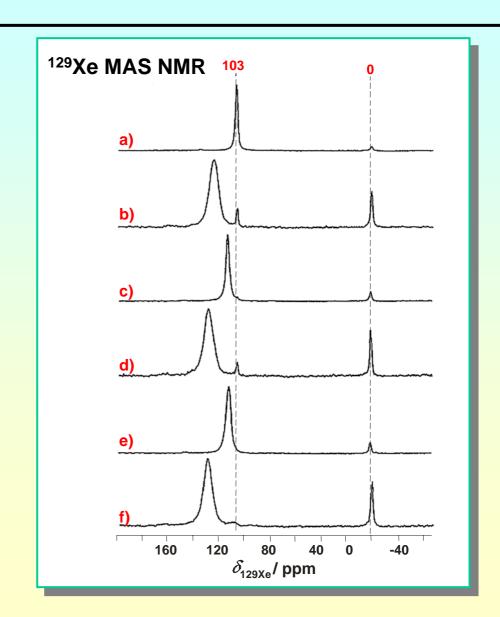


# Investigation of the pore system of solid catalysts


# Advantage of MAS for NMR studies of laser-polarized xenon in porous solids

- solid-state <sup>129</sup>Xe NMR spectroscopy of laser-poarized xenon adsorbed on zeolite ITQ-6:
  - helium flow of 100 cm³ min⁻¹
     with 1 % hyperpolarized xenon
  - repetition time of 1 s in magnetic field of 7.0 T
  - sufficient resolution requires application of MAS
- signal assignment:
  - signal at 65 ppm is xenon in the interlamellar space
  - signal at 100 ppm is xenon in cavities
  - signal at 135 ppm corresponds to xenon in channels




# Study of xenon exchange dynamics in zeolite ITQ-6

- 2D-exchange <sup>129</sup>Xe MAS NMR of laser-poarized xenon adsorbed on zeolite ITQ-6:
  - helium flow of 100 cm<sup>3</sup> min<sup>-1</sup>
     with 1 % hyperpolarized xenon
  - magnetic field of 7.0 T
  - $v_{\text{rot}}$  = 3 kHz, repetition time of 2 s, and 8 scans per spectrum
  - mixing time of 50 ms
- cross peaks indicate xenon exchange between:
  - a) gas phase and the interlamellar space
  - b) cavities and the interlamellar space
  - c) channels and cavities



# Study of the location of reactant molecules in porous catalysts

- 129Xe MAS NMR of laser-poarized xenon on silicalite-1:
  - helium flow with 1 % hyperpolarized xenon
  - magnetic field of 7.0 T
  - $v_{\text{rot}}$  = 3.5 kHz
  - signal at 103 ppm caused by xenon in empty 10-ring channels
- pulse-like addition of benzene (1.3 %):
  - resonance shift to left due to adsorption of benzene in 10-ring channels (b, d, f)
  - resonance shift to right due to desorption of benzene, i.e, 1.5 h later (c, e)



# Investigation of the selective oxidation of alkanes on VPO catalysts

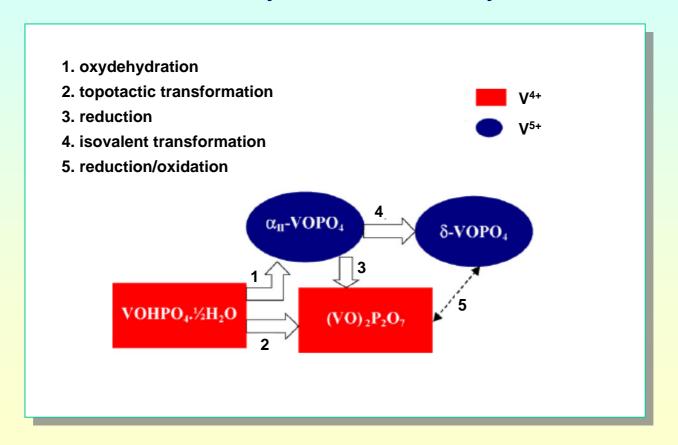
### Selective oxidation of n-butane to maleic anhydride (MA)

#### reaction:

$$CH_3-CH_2-CH_2-CH_3 + 3 \frac{1}{2}O_2 \xrightarrow{VPO} O = \bigcirc O + 4 H_2O$$

- possible intermediates are 1-butene, 1,3-butadiene, dihydrofuran, and furan [1]
- MA is an important step in the polyester resin production [1]

#### catalyst:


- VPO catalysts are prepared by activation of vanadyl hydrogenphosphate hemihydrate VOHPO<sub>4</sub>· 0.5 H<sub>2</sub>O in n-butane/air flow [2]:

```
reducing atm. \longrightarrow (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (vanadyl pyrophosphate) oxidizing atm. \longrightarrow VOPO<sub>4</sub> (vanadyl orthophosphate phases)
```

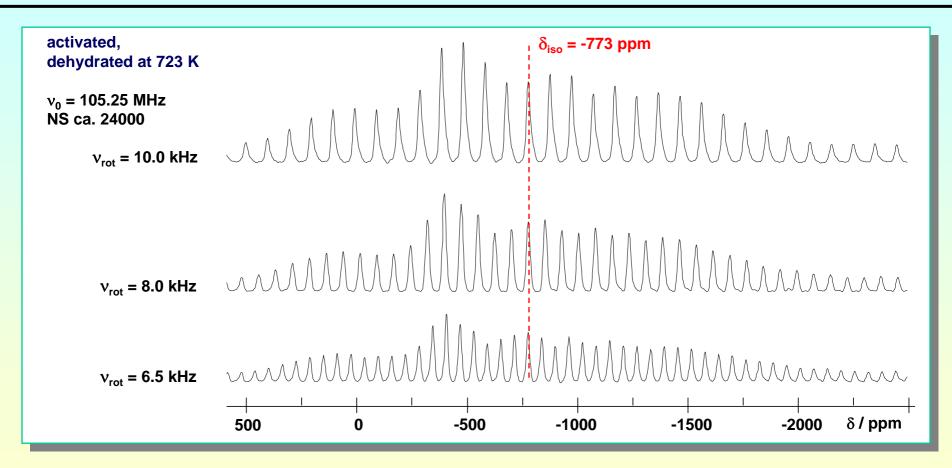
- activity increases sharply for P / V ratio reaching > 1
  - [1] M. Hävecker et al., J. Phys. Chem. B, 107 (2003) 4587.
  - [2] R.A. van Santen, Handbook of Heterogeneous Catalysis, Springer, 1997, p. 2244.

#### Structural transformations

- suggested transformations of the VOHPO<sub>4</sub> · 0.5 H<sub>2</sub>O precursor during the formation of the final VPO catalyst and the reaction cycle:



### Preparation of supported VPO catalysts


#### preparation of VPO/SBA-15 catalysts according to Li et al.:

- siliceous SBA-15 is added to isobutyl/benzyl alcohols (1 : 1) with  $V_2O_5$ , PEG 6.000 and  $H_3PO_4$
- VPO loadings of 20 to 60 wt.%
- activation in a flow of 1.5 % n-butane, 17.5 %  $\rm O_2$  and balance  $\rm N_2$  (100 ml/min) at 673 K for 15 h

#### • ICP-AES and nitrogen adsorption:

| Samples       | P/V  | BET surface<br>m² / g | Pore volume<br>cm³ / g |
|---------------|------|-----------------------|------------------------|
| SBA-15        | -    | 1164                  | 1.25                   |
| 20%VPO/SBA-15 | 1.09 | 662                   | 0.80                   |
| 60%VPO/SBA-15 | 1.04 | 456                   | 0.54                   |

#### <sup>51</sup>V MAS NMR of 60%VPO/SBA-15



| Material      | $\delta_{iso}$ | Δδ       | $\eta_{\delta}$ | C <sub>QCC</sub> | η <sub>Q</sub> |
|---------------|----------------|----------|-----------------|------------------|----------------|
| 60%VPO/SBA-15 | -773 ppm       | -900 ppm | 0.10            | 1.99 MHz         | 0.59           |

# <sup>51</sup>V MAS NMR spectroscopy of vanadium orthophosphates

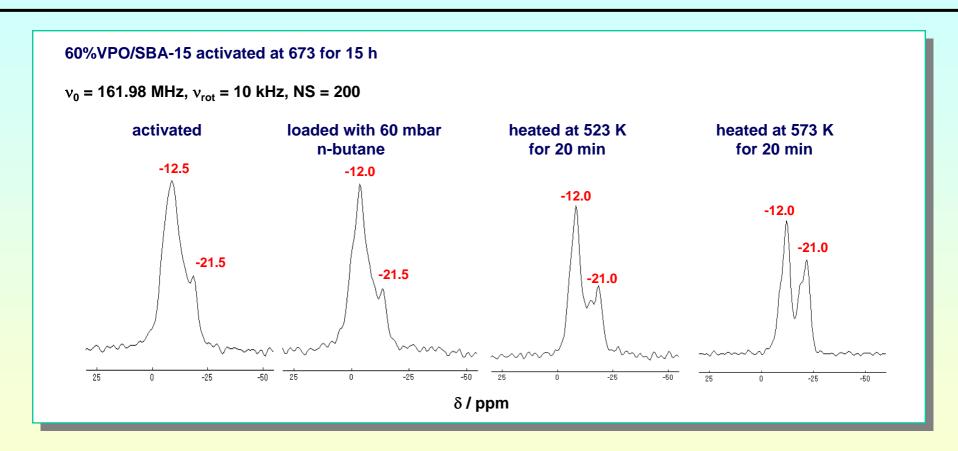
#### - <sup>51</sup>V MAS NMR investigations of V<sup>5+</sup> species in VOPO<sub>4</sub>:

| Material                         | $\delta_{iso}$       | Δδ                 | $\eta_{\delta}$ | C <sub>QCC</sub>     | ηα           | References       |
|----------------------------------|----------------------|--------------------|-----------------|----------------------|--------------|------------------|
| 60%VPO/<br>SBA-15                | -773 ppm             | -900 ppm           | 0.10            | 1.99 MHz             | 0.59         | present<br>Study |
| $\alpha_{l}$ -VOPO <sub>4</sub>  | -691 ppm             | 820 ppm            | 0.00            | 1.55 MHz             | 0.55         | [1]              |
| $\alpha_{II}$ -VOPO <sub>4</sub> | -776 ppm<br>-755 ppm | 582 ppm<br>922 ppm | 0.67<br>0.08    | 0.83 MHz<br>0.63 MHz | 0.52<br>0.09 | [1]<br>[2]       |
| β-VOPO <sub>4</sub>              | -691 ppm<br>-735 ppm | 818 ppm<br>818 ppm | 0.00<br>0.05    | 1.99 MHz<br>1.45 MHz | 0.59<br>0.44 | [1]<br>[2]       |
| γ-VOPO <sub>4</sub> /1           | -755 ppm             | 955 ppm            | 0.15            | 0.55 MHz             | 0.68         | [2]              |
| γ-VOPO <sub>4</sub> /2           | -739 ppm             | 942 ppm            | 0.07            | 1.32 MHz             | 0.55         | [2]              |

-  $\Delta\delta$  values of 900 to 1300 ppm indicate distorted VO<sub>6</sub> octahedra

<sup>[1]</sup> O.B. Lapina et al., J. Mol. Catal. A: Chem. 162 (2000) 381.

<sup>[2]</sup> R. Siegel et al., Magn. Reson. Chem. 42 (2004) 1022.


# <sup>31</sup>P MAS NMR spectroscopy of vanadium orthophosphates

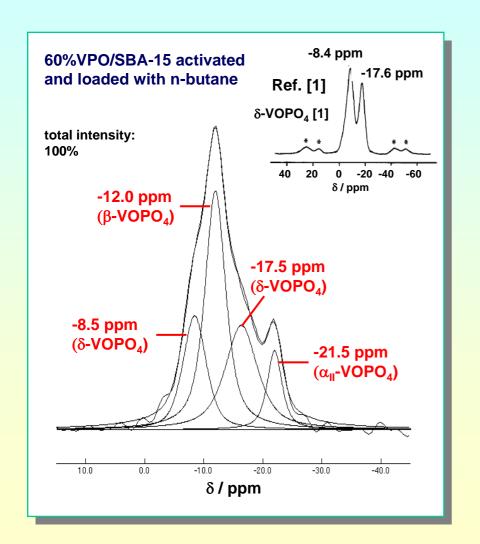
# - <sup>31</sup>P MAS NMR studies of phosphorous atoms at vanadium V<sup>5+</sup> species in VOPO<sub>4</sub> phases:

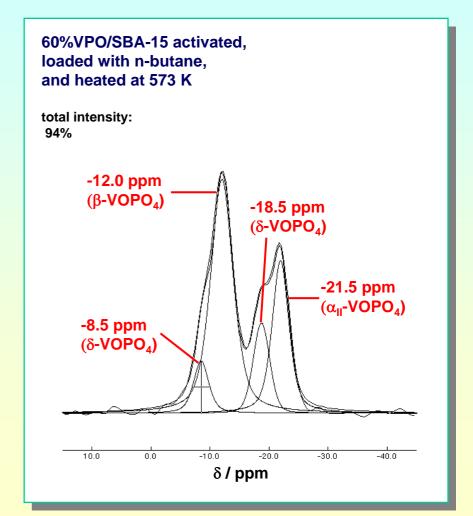
| <sup>31</sup> P MAS NMR signals                                  | V5+ phases                             | References |
|------------------------------------------------------------------|----------------------------------------|------------|
| -20.5 ppm                                                        | $\alpha_{II}$ -VOPO <sub>4</sub>       | [3]        |
| -11.5 ppm                                                        | β-VOPO <sub>4</sub>                    | [3]        |
| -21.2 ppm, -17.3 ppm (ca. 1:1)<br>-14.9 ppm (very weak shoulder) | γ-VOPO <sub>4</sub>                    | [3]        |
| -17.6 ppm, -8.4 ppm (ca. 1:1)<br>-6.5 ppm (very weak shoulder)   | δ-VOPO <sub>4</sub>                    | [3]        |
| 2.7 to 3.6 ppm                                                   | $\alpha_{l}$ -VOPO <sub>4</sub>        | [4, 5, 6]  |
| 3.9 ppm                                                          | VOPO <sub>4</sub> · n H <sub>2</sub> O | [4]        |

- [1] M.T. Sananes-Schulz et al., J. Catal. 166 (1997) 388.
- [2] M.T. Sananes, A. Tuel, Solid State Nuclear Magn. Reson., 6 (1996) 157.
- [3] F. Ben Abdelouahab et al., J. Catal. 134 (1992) 151.
- [4] S.A. Ennaciri et al., Eur. J. Solid State Inorg. Chem. 30 (1993) 227.
- [5] K.E. Birkeland et al., J. Phys. Chem. B 101 (1997) 6895.
- [6] K. Ait-Lachgar et al., J. Catal. 177 (1998) 224.

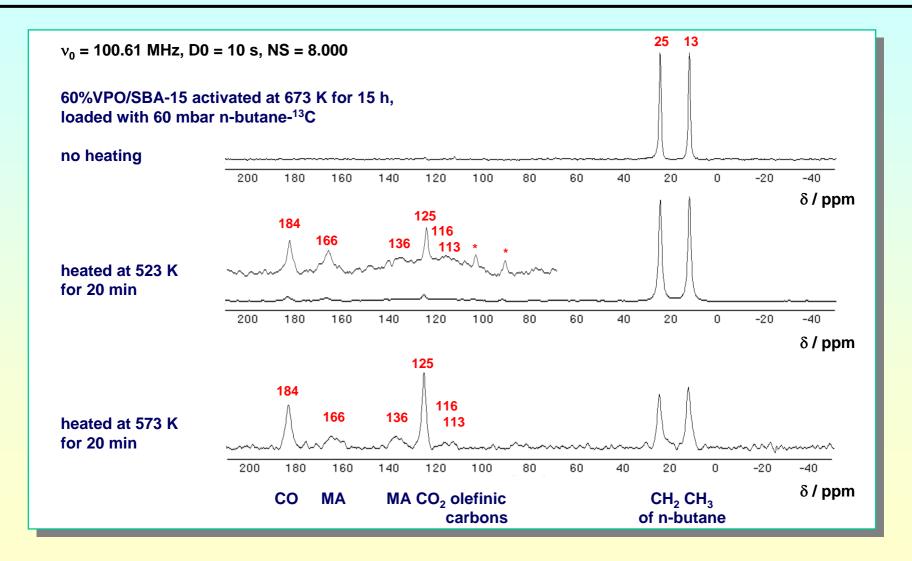
#### <sup>31</sup>P MAS NMR of 60%VPO/SBA-15




-21.5 to -21.0 ppm: P at V<sup>5+</sup> in  $\alpha_{II}$ - and  $\gamma$ -VOPO<sub>4</sub>


-8 and -18 ppm: P at V<sup>5+</sup> in  $\delta$ -VOPO<sub>4</sub> — decrease upon conversion of n-butane

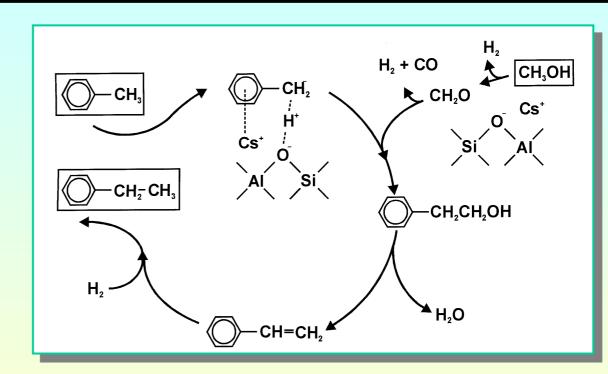
-11.5 to -12.5 ppm: P at V<sup>5+</sup> in β-VOPO<sub>4</sub>


M. Hunger et al., poster AC-03, EUROMAR 2008, St. Petersburg, Russia.

## Simulation of <sup>31</sup>P MAS NMR spectra

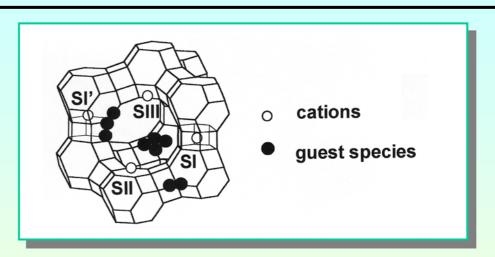





### <sup>13</sup>C MAS NMR of n-butane on 60%VPO/SBA-15



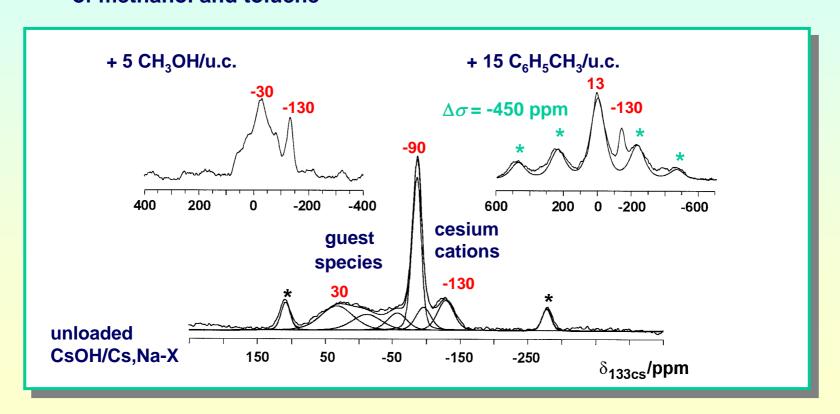
# Investigation of base sites and of reactions catalyzed by basic zeolites


# Side-chain alkylation of toluene with methanol on basic zeolites

- reaction scheme proposed by Yashima et al., J. Catal. 26 (1972) 303:
  - activation of toluene by adsorption on the zeolite
  - conversion of methanol to formaldehyde catalyzed by base sites
- proposed surface species:
  - formate ( $\delta_{13C}$  = 166 ppm)
  - carbonate ( $\delta_{13C}$  = 171 ppm)

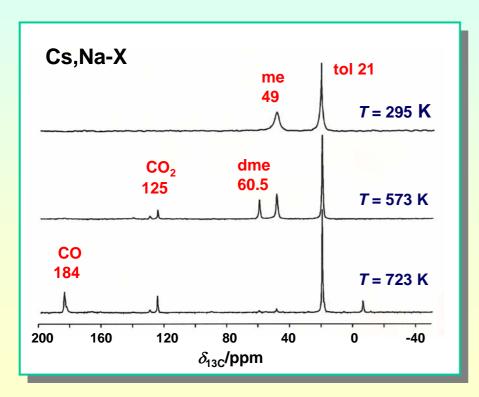


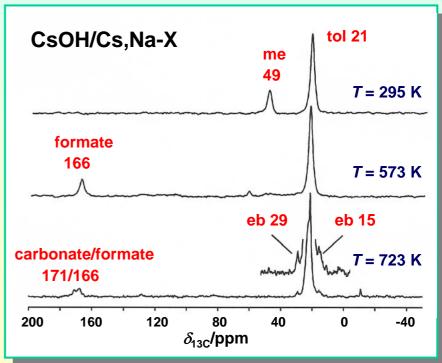
# NMR characterization of the calcined zeolite CsOH/Cs,Na-X


zeolite Na-X ( $n_{Si}/n_{Al}$  = 1.4) exchanged with cesium cations (55 %) and impregnated with cesium hydroxide (24 CsOH/u.c.)






## Adsorbate complexes formed by the reactants on zeolite CsOH/Cs,Na-X

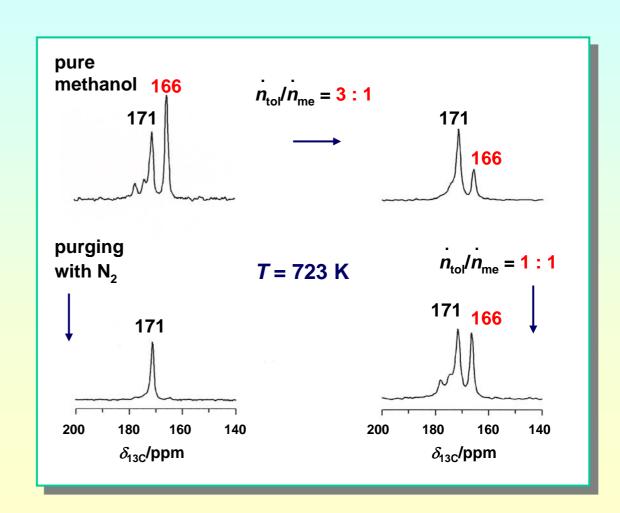

 <sup>133</sup>Cs MAS NMR spectroscopy performed before and after adsorption of methanol and toluene



## Side-chain alkylation of toluene on basic zeolites X under batch conditions

<sup>13</sup>C MAS NMR spectroscopy: 15  $C_6H_5^{13}CH_3/u.c.$  5 <sup>13</sup> $CH_3OH/u.c.$ 

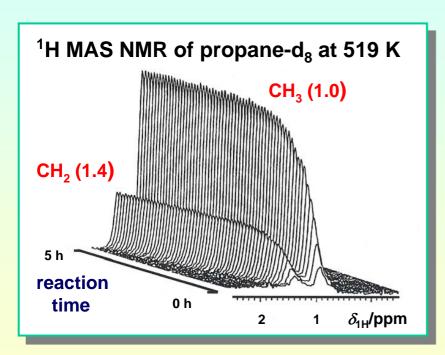


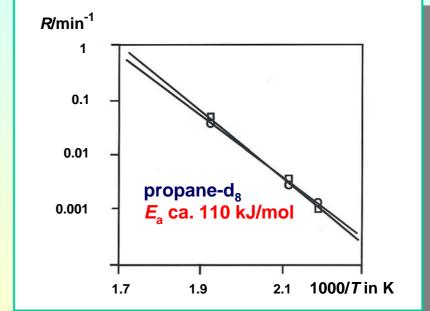



## Reactivity of formate species on zeolite CsOH/Cs,Na-X under flow conditions

• in situ <sup>13</sup>C CF MAS NMR spectroscopy:

$$W_{\text{cat}}/F_{\text{me}} = 60 \text{ gh/mol}$$


- carbonate species are chemically stable
- formate species are consumed by toluene which indicates a high reactivity




# Investigation of the H/D exchange on acidic catalysts

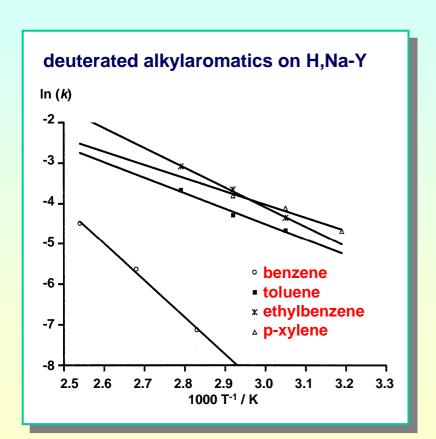
## Evaluation of reaction mechanisms by H/D exchange on acidic zeolites

H/D exchange of propane-d<sub>8</sub> (A) and isobutane-d<sub>10</sub> (B) with SiOHAI groups on H-ZSM-5





- A:
- no regiospecific H/D exchange
- *E*<sub>a</sub> of ca. 110 kJ/mol
- no formation carbenium ions


A.G. Stepanov et al., Catal. Lett. 54 (1998) 1

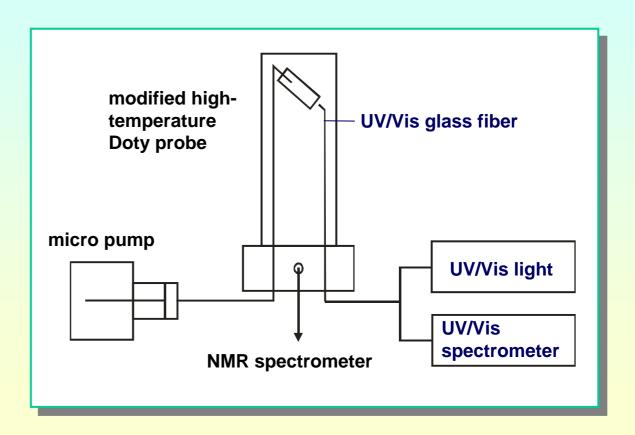
- regiospecific H/D exchange
  - E<sub>a</sub> of ca. 50 kJ/mol
  - formation carbenium ions

J. Sommer et al., J. Catal. 181 (1999) 265.

## H/D exchange between deuterated reactants and protons of surface OH groups

H/D exchange with deuterated alkylaromatics on zeolites H,Na-Y, La,Na-Y, and H-ZSM-5

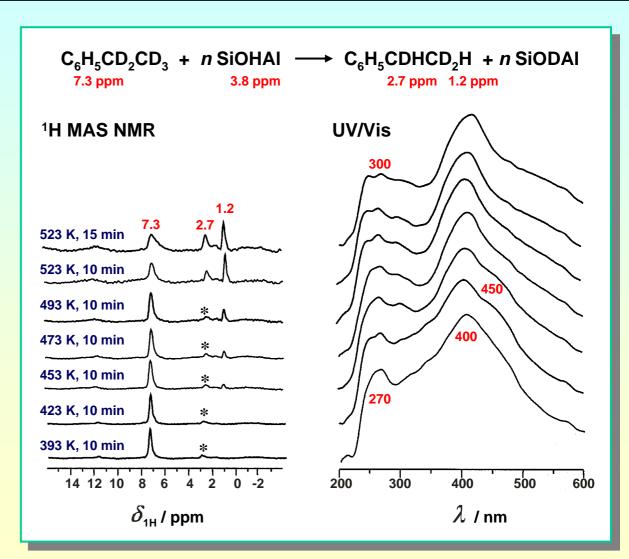



correlation of activation energies  $E_A$  of H/D exchange and low-field shifts  $\Delta \delta_{1H}$  upon adsorption CD<sub>3</sub>CN:

| catalyst | molecule    | E <sub>A</sub> / kJ mol <sup>-1</sup> | $\Delta \delta_{1H}$ / ppm |
|----------|-------------|---------------------------------------|----------------------------|
| H,Na-Y   | benzene     | 76                                    | 5.1                        |
| La,Na-Y  | benzene     | <b>67</b>                             | 5.7                        |
| H-ZSM-5  | benzene     | 46                                    | 7.9                        |
| H,Na-Y   | benzene     | 76                                    |                            |
|          | ethylbenzen | e 41                                  |                            |
|          | toluene     | 32                                    |                            |
|          | p-xylene    | 27                                    |                            |

### H/D exchange studied by <sup>1</sup>H MAS NMR-UV/Vis

injection of micro-pulses give start point for H/D exchange at elavated temperature



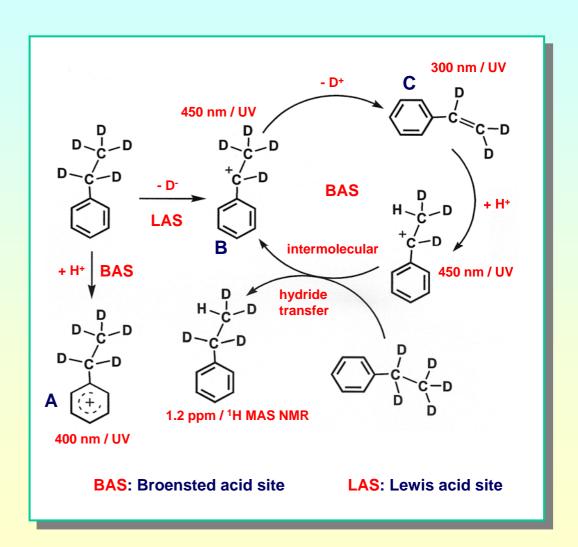



pump Mikro g/5 of Fa. ProMinent, Germany, for single pulses with volumes of 2 to 50 μl

## Study of the side-chain H/D exchange of ethylbenzene on dealuminated zeolite Y

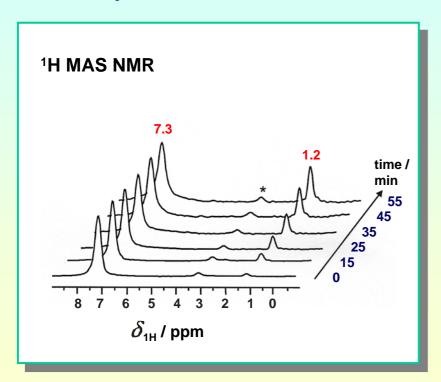
- <sup>1</sup>H MAS NMR studies under pulsed-flow conditions:
  - steamed zeolite deH-Y  $(n_{Si}/n_{AI} = 5.4)$
  - pulses of 7.8 mg ethyl-*d*<sub>5</sub>-benzene
  - 32 scans per spectrum
     with repetition time of 10 s
     at 9.4 T
  - sample spinning rate of ca. 2 kHz
- message:
  - regioselective H/D exchange at 443 to 463 K (¹H MAS NMR)
  - different types of carbenium ions (UV/Vis)

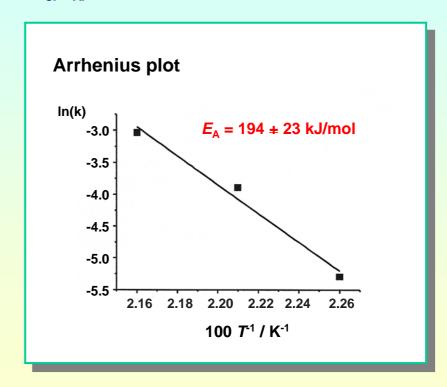



## Mechanism of the regioselctive side-chain H/D exchange of ethylbenzene on deH-Y

#### ¹H MAS NMR results:

- selective H/D exchange of methyl groups (1.2 ppm)
- activation energy of 194 kJ/mol indicates hydride transfer


#### UV/Vis results:


- ethylcyclohexadienyl carbenium ions at BAS (400 nm), A
- sec-ethylphenyl carbenium ions at LAS (450 nm), B
- styrene at BAS (300 nm), C



## Study of the side-chain H/D exchange of ethylbenzene on dealuminated zeolite Y

• in situ pulsed-flow <sup>1</sup>H MAS NMR study of the regioselective H/D exchange of the side-chain of ethyl- $d_5$ -benzene on dealuminated zeolite deH-Y ( $n_{\rm Si}/n_{\rm Al}$  = 5.4, 22 Alex/u.c, 10.9 SiOHAI /u.c)





- message:
  - activation energy of the regioselective H/D exchange (194 kJ/mol) indicates that a hydride transfer reaction is the rate determining step

J. Huang, et al., ChemPhysChem 9 (2008) 1107.

In situ MAS NMR-UV/Vis investigations of organic deposits formed during the methanol to olefin conversion on acidic catalysts

## Methanol to olefin (MTO) conversion on acidic zeolite catalysts

1996: Norsk Hydro/Norway, demonstration unit, 0.5 t ethene and

propene per year, H-SAPO-34 used as catalyst

2005: Dalian/China, test unit, 10 000 t olefins per year

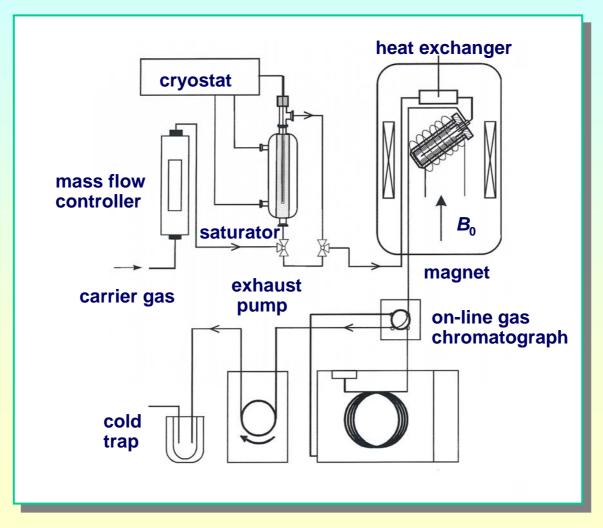
2005: Shaanxi/China, start of the construction of a commercial

plant, 800 000 t olefins per year

#### Periods of the methanol conversion on acidic zeolites

I: Induction period of the methanol conversion on zeolite catalysts

Formation of first C-C bonds by reaction of surface methoxy groups and alkylation of organic impurities

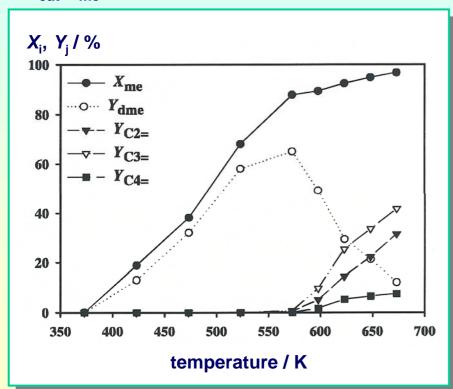

II: Steady-state of the methanol conversion on zeolite catalysts

Formation of light olefins by methylation and dealkylation of catalytically active hydrocarbon-pool compounds (olefinic and aromatic deposits)

III: Catalyst deactivation during methanol conversion on zeolites

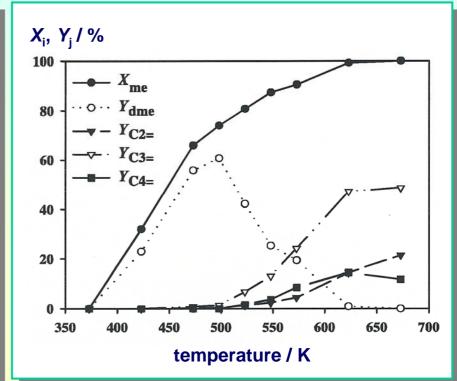
Formation of inactive coke deposits affecting the methanol conversion and the selectivity to ethylene and propylene

## Coupling of in situ CF MAS NMR and on-line gas chromatography



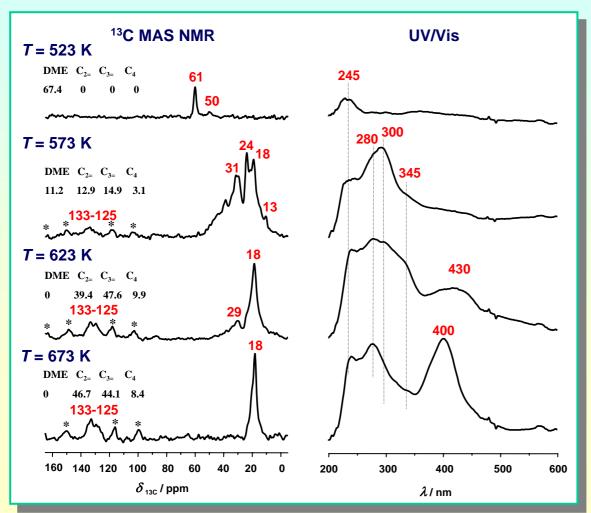

M. Hunger et al., Catal. Lett. 57 (1999) 199.

## Conversion of methanol on H-ZSM-5 in a fixed-bed and in an MAS NMR rotor reactor


#### fixed-bed reactor

$$W_{\text{cat}}/F_{\text{me}} = 25 \text{ gh/mol}$$




#### spinning (2 kHz) MAS NMR rotor reactor

$$W_{\text{cat}}/F_{\text{me}} = 25 \text{ gh/mol}$$



### In situ MAS NMR-UV/Vis study of the formation of organic deposits

In situ <sup>13</sup>C MAS NMR-UV/Vis spectroscopy of deposit formation on H-SAPO-34 at 523 to 673 K for 3 h under continuous-flow conditions ( $W_{cat}/F_{me} = 25$  gh/mol)

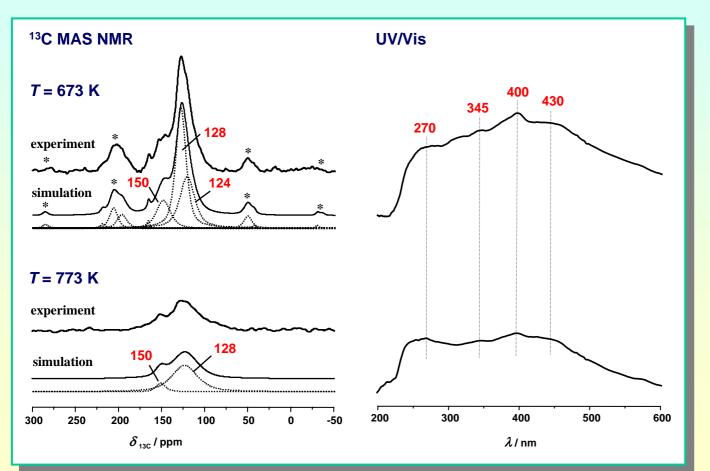


#### NMR:

 separation of alkyl groups (13-31) and aromatic compounds (125-133)

#### **UV/Vis:**

- sensitive for carbenium cations (300, 345, 430 nm)
- separation of aromatics (280 nm) and polycyclic aromatics (400 nm)


#### **On-line GC:**

determination of volatile reaction products

Y. Jiang et al., Microporous Mesoporous Mater. 105 (2007) 132.

### Regeneration of coked MTO catalyst

Regeneration of coked H-SAPO-34 by purging with synthetic air (20 vol.-% O<sub>2</sub>, 30 ml/min) at 673 K (top) and 773 K (bottom) for 2 h



decrease of all aromatics including coke compounds (400 nm)

new band of phenolic species (270 nm)

Y. Jiang et al., Microporous Mesoporous Mater. 105 (2007) 132.

### Results of the quantitative evaluation

### Quantitative evaluation of the <sup>13</sup>C MAS NMR spectra of coked H-SAPO-34 regenerated by burning with synthetic air at 673 and 773 K for 2 h

| Signal at $\delta_{\rm 13C}$ /ppm | Assignments                                       | Number in mmol/g     |                      |                      |
|-----------------------------------|---------------------------------------------------|----------------------|----------------------|----------------------|
|                                   |                                                   | reaction<br>at 673 K | syn. air at<br>673 K | syn. air at<br>773 K |
| 16-21                             | methyl groups bound to aromatics                  | 0.53                 | -                    | -                    |
| 14-15 and<br>22-29                | ethyl groups<br>bound to<br>aromatics             | 0.08                 | -                    | -                    |
| 125-137                           | alkylated and non-<br>alkylated aromatic<br>rings | 0.56                 | 0.17                 | 0.05                 |
| 145-155                           | carbon in aromatics bound to oxygen atoms         | -                    | 0.45                 | 0.13                 |

nearly total removal of coke compounds (UV/Vis bands at 280 nm and 400 nm), but formation of oxygenated species (270 nm)

### Summary I

### applications of in situ NMR spectroscopy in heterogeneous catalysis:

- chemical behavior and local structure of active sites under reaction conditions
- origin of the catalyst deactivation under steady state conditions
- reaction pathways using labelled reactants
- activation energies of reaction steps
- reactivity of surface complexes and intermediates formed under reaction conditions

### Summary II

### further developements in the field of in situ NMR spectroscopy:

- increase of the temperature range up to 1023 K
- application of modern solid-state NMR techniques such as MQMAS for the study of surface sites under reaction conditions
- significant enhancement of signal intensities by a continuous injection of Laser-polarized <sup>129</sup>Xe into CF MAS NMR probes
- improvement of the time-resolution of *in situ* NMR investigations by an introduction of pulsed-flow experiments
- combination of NMR spectroscopy with other spectroscopic techniques such as MS

### **Acknowledgements**

Udo Schenk
Michael Seiler
Wei Wang
Andreas Buchholz
Mingcan Xu
Jian Jiao
Yijiao Jiang

Dieter Freude Alexander Stepanov Irina Ivanova Mikhail Luzgin Deutsche Forschungsgemeinschaft

Volkswagen-Stiftung Hannover

Max-Buchner-Forschungsstiftung

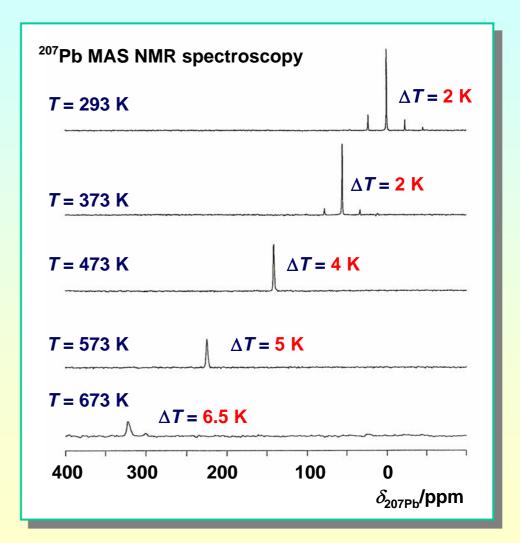
Fonds der Chemischen Industrie

### Literature

- M. Hunger, *In situ NMR spectroscopy in heterogeneous catalysis*, Catal. Today 97 (2004) 3-12.
- M. Hunger, J. Weitkamp, *In situ Magnetic Resonance Techniques: Nuclear Magnetic Resonance*, in: B.M. Weckhuysen (ed.), *In situ Spectroscopy of Catalysts*, American Scientific Publishers, Stevenson Ranch, California, 2004, p. 177-218.
- M. Hunger, W. Wang, Characterization of Solid Catalysts in the Functioning State by Nuclear Magnetic Resonance Spectroscopy, Adv. Catal. 50 (2006) 149-225.
- M. Hunger, *In situ flow MAS NMR spectroscopy: State of the art and applications in heterogeneous catalysis*, Prog. Nucl. Magn. Reson. Spectrosc., doi.org/10.1016/j.pnmrs.2007.08.001.

## Behavior of the high-temperature CF MAS NMR probe

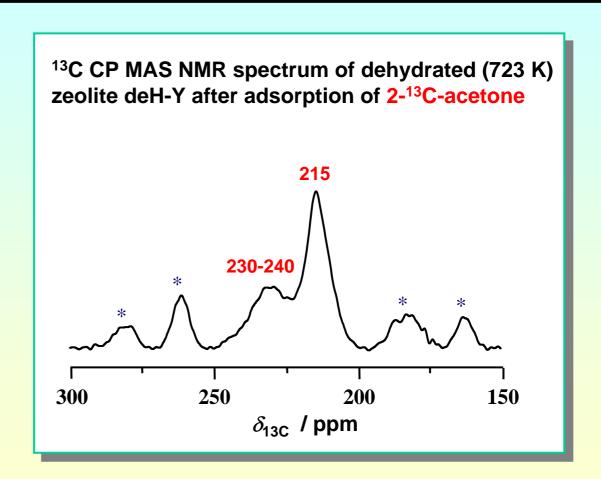
• <sup>207</sup>Pb MAS NMR of Pb(NO<sub>3</sub>)<sub>2</sub>:


$$\Delta T/\Delta \delta = 1.29 \text{ K/ppm}$$
 [1]

 modified 7 mm Doty MAS NMR probe DSI-740:

$$v_0 = 83.2 \text{ MHz}$$

$$v_{\rm rot}$$
 = 2.5 kHz


$$F_{N2} = 15 \text{ ml/min}$$



## Probing Lewis acid sites of dealuminated zeolite H-Y

H-Y  $(n_{Si}/n_{AI} = 2.7)$ : 46.5 SiOHAI / u.c.

deH-Y (n<sub>Si</sub>/n<sub>Al</sub> = 5.4): 10.9 SiOHAI / u.c. 22 extra-framework Al / u.c.



215 ppm: acetone on Brønsted acid sites or physical adsorbed acetone 230-240 ppm: acetone on extra-framework aluminum (Lewis acid sites)

### Assignment of UV/Vis bands

### Assignments of UV/Vis bands ( $\pi$ - $\pi$ \* transitions) observed during the methanol-to-olefin conversion on H-SAPO-34 at 523 to 673 K

| Bands at $\nu$ / nm | Assignments                              |
|---------------------|------------------------------------------|
| 220-245             | neutral dienes                           |
| 254-280             | neutral aromatics and polyalkylaromatics |
| 270                 | neutral phenols                          |
| 300-320             | monoenylic carbenium ions                |
| 345-380             | dienylic carbenium ions                  |
| 390-410             | neutral polycyclic aromatics             |
| 430-470             | trienylic carbenium ions                 |

H.G. Karge *et al.*, Stud. Surf. Sci. Catal. 49 (1989) 1327; J. Mohan, Organic Spectroscopy Principles and Applications, Alpha Science International Ltd., Harrow, U.K., 2002, p. 137; A.V. Demidov, Mater. Chem. Phys. 39 (1994) 13; I. Kirisci *et al.*, Chem. Rev. 99 (1999) 2085; R. Ahmad *et al.*, J. Catal. 218 (2003) 365-374.