

In Situ Solid-State NMR Investigation of the Reactivity of Ethylbenzene in Acidic Zeolites

Michael Hunger

Institute of Chemical Technology, University of Stuttgart, Germany

32nd Discussion Meeting and Joint Benelux/German Magnetic Resonance Conference Münster, Germany, September 20 to 23, 2010

Broensted and Lewis acid sites in zeolites

structure of zeolite Y (FAU, faujasite): large-pore zeolite with 12-ring windows

Suggested mechanisms of ethylbenzene disproportionation

Streitwieser-Reif mechanism for the homogeneously catalyzed reaction

Suggested reaction mechanisms for the heterogeneously catalyzed reaction on zeolites:

- via diphenylethane intermediates in largepore zeolites
- dealkylation/realkylation with free ethene or alkoxy species in medium-pore zeolites

U. Weiß et al., Stud. Surf. Sci. Catal., Vol. 105, Elsevier, Amsterdam, 1997, p. 973-980.

In situ solid-state NMR studies of the C₆-ring activation of aromatics adsorbed on acidic zeolites

Preparation of sealed catalyst samples for solid-state NMR studies under batch conditions

dehydration, loading, and sealing of the catalyst filled in an MAS NMR rotor inside a vacuum equipment dehydration and loading of the catalyst inside the glass insert (e.g. commercial Wilmad MAS NMR inserts for 4 mm and 7 mm rotors)

H/D exchange between aromatic deuterons and hydroxyl protons of bridging OH groups

¹H VT/MAS NMR studies of zeolite H,Na-Y loaded with ethylbenzene ($C_6D_5C_2H_5$)

stack plot of spectra recorded at T = 358 K

H/D exchange rates at T = 328 - 358 K

H/D exchange between aromatic rings and protons of surface OH groups

¹H VT/MAS NMR studies of deuterated aromatics on zeolites H,Na-Y (Si/Al = 2.7), 75La,Na-Y (Si/Al = 2.7), and H-ZSM-5 (Si/Al = 26)

correlation of activation energies E_A of H/D exchange and low-field shifts $\Delta \delta_{1H}$ upon adsorption CD₃CN:

catalyst	molecule	E _A / kJ mol ⁻¹	$\Delta \delta_{ m 1H}$ / ppm
H,Na-Y	benzene	76	
	ethylbenzer	ne 41	
	toluene	32	
	<i>p</i> -xylene	27	
H,Na-Y	benzene	76	5.1
La,Na-Y	benzene	67	5.7
H-ZSM-5	benzene	46	7.9

Characterization of acid strength via H-bond-induced low-field shift $\Delta \delta_{1H}$

¹H MAS NMR spectroscopy of acetonitrile-loaded Broensted acidic materials

Low-field shift $\Delta \delta_{1H}$	Adsorbent and type of OH group	
1.2 ppm	AIOH in MIL-53(AI)	
3.6 ppm	H-X (Si/Al= 1.3)	
3.8 ppm	42La,Na-X and 32Al,Na- X (Si/Al = 1.4)	
4.9 ppm	75La,Na-X (S/AI = 1.4)	
5.1 ppm	H-Y (Si/Al = 2.7)	
5.3 ppm	34AI,Na-Y and 63AI,Na- Y (Si/AI = 2.7)	
5.7 ppm	42La,Na-Y and 75La,Na- Y (Si/Al = 2.7)	
6.2 ppm	H-MOR (Si/Al = 6.7)	
6.7 ppm	H-MOR (Si/Al = 10)	
7.0 ppm	dealuminated H-Y (Si/Al = 18)	
7.9 ppm	H-ZSM-5 (Si/AI = 26)	

H/D exchange between aromatic rings and protons of surface OH groups

¹H VT/MAS NMR studies of deuterated aromatics on zeolites H,Na-Y (Si/Al = 2.7), 75La,Na-Y (Si/Al = 2.7), and H-ZSM-5 (Si/Al = 26)

correlation of activation energies E_A of H/D exchange and low-field shifts $\Delta \delta_{1H}$ upon adsorption CD₃CN:

catalyst	molecule	E _A / kJ mol ⁻¹	$\Delta \delta_{ m 1H}$ / ppm
H,Na-Y	benzene	76	
	ethylbenzer	ne 41	
	toluene	32	
	<i>p</i> -xylene	27	
H,Na-Y	benzene	76	5.1
La,Na-Y	benzene	67	5.7
H-ZSM-5	benzene	46	7.9

In situ solid-state NMR studies of the side-chain activation of alkylaromatics adsorbed on acidic zeolites

Pulsed-flow MAS NMR-UV/Vis spectroscopy

installation of the injection technique and the glass fiber in the *in situ* MAS NMR probe

M. Hunger, Prog. Nucl. Magn. Reson. Spectrosc. 53 (2008) 105-127

Technique of in situ pulsed-flow MAS NMR-UV/Vis spectroscopy

coupling of MAS NMR and UV/Vis spectroscopy by installation of a quartz fiber at the bottom of the MAS NMR stator

Pulsed-flow equipment

injection of liquid reactants into the spinning MAS NMR rotor via a micro-pulse pump

pulsed-flow experiments:

- study of the time dependence of the conversion of reactants
- study of the isotopic exchange of reactants at high temperatures with well-defined starting time

pump Mikro g/5 of Fa. ProMinent, Germany, for single pulses with volumes of 2 to 50 μl

Technique of in situ MAS NMR-UV/Vis spectroscopy

7 mm flow Bruker MAS NMR probe equipped with a glass fiber (left) and UV/Vis light source and spectrometer of Avantes (bottom)

Study of the side-chain H/D exchange of ethylbenzene on dealuminated zeolite H-Y

¹H HT/MAS NMR pulsedflow experiments:

- steamed zeolite deH-Y

 $(n_{\rm Si}/n_{\rm AI} = 5.4)$

- pulses of 7.8 mg ethyld₅-benzene
- 32 scans per spectrum with repetition time of 10 s at 9.4 T
- sample spinning rate of ca. 2 kHz

message:

- regioselective H/D exchange at 443 to 463 K (¹H MAS NMR)
- different types of carbenium ions (UV/Vis)

Study of the side-chain H/D exchange of ethylbenzene on dealuminated zeolite H-Y

in situ pulsed-flow ¹H MAS NMR study of the regioselective H/D exchange of the side-chain of $C_6H_5CD_2CD_3$ on dealuminated zeolite deH-Y (Si/AI = 5.4, 22 Al^{ex}/u.c, 10.9 SiOHAI /u.c)

message:

- activation energy of the regioselective H/D exchange (194 kJ/mol) indicates that a hydride transfer reaction is the rate determining step

Mechanism of the regioselective side-chain H/D exchange of ethylbenzene on dealuminated zeolite H-Y

¹H MAS NMR results:

- selective H/D exchange of methyl groups (1.2 ppm)
- activation energy of 194 kJ/mol indicates hydride transfer

D 450 nm / UV D-- D-BAS + H* LAS intermolecular BAS + H* hydride transfer 450 nm / UV Α 1.2 ppm / ¹H MAS NMR 400 nm / UV

- D+

UV/Vis results:

- ethylcyclohexadienyl carbenium ions at BAS (400 nm), A
- sec-ethylphenyl carbenium ions at LAS (450 nm), B
- styrene at BAS (300 nm), C

BAS: Broensted acid site

LAS: Lewis acid site

300 nm / UV

С

Solid-state NMR studies of the heterogeneously catalyzed conversion of ethylbenzene on acidic zeolites

¹³C MAS NMR investigation of the ethylbenzene conversion on zeolites H-Y and Al, Na-Y

large-pore zeolite Y: 12-membered oxygen rings with diameter of 0.71 nm and supercages

¹³C MAS NMR

diphenylethane (D)

aromatic carbons

Structure of medium-pore zeolite H-ZSM-5

structure-type MFI

H⁺_n[AI_nSi_{96-n}O₁₉₂] crossing intersections at interconnecting 10-ring channels [100] 0.51 nm x 0.55 nm [010] 0.53 nm x 0.56 nm

¹³C MAS NMR investigation of the ethylbenzene conversion on zeolite ZSM-5

¹³C MAS NMR 29 AI,Na-ZSM-5 + 20 ethyl[α-¹³C]benzene 23 15 Α × 3 HPDEC 503 K, 0.5 h 90 ⁷³ ∽__∕ × 6 14 СР 483 K, 0.5 h H₃C H₂C 15 CP 129 298 K 140 120 100 80 60 40 20 -20 0 δ_{13C} /ppm

Reaction mechanism

assignment:

23 ppmdiethylbenzene (H)29 ppmethylbenzene (A)

73 ppmsurfa90 ppmoligo129 ppmarom

surface ¹³C-1-ethoxy groups (J) oligomeric alkoxy groups aromatic carbons

¹³C MAS NMR investigation of the catalyst deactivation during ethylbenzene conversion

Summary

Protonation/proton exchange of alkylaromatics on acidic zeolite catalysts:

- H/D exchange at the rings of alkylaromatics occurs already at 328 to 358 K and depends on the nature of the alkyl groups (+I effect)
- in the presence of Lewis acid sites, a regioselective H/D exchange at the side-chain of ethylbenzene via hydride abstraction and hydride transfer occurs

Reaction mechanisms on large- and medium-pore zeolites:

- ¹³C MAS NMR signal at 46 ppm upon disproportionation of ethyl[α-¹³C]benzene on large-pore zeolite Y (supercages, 12-ring windows) supports a mechanism *via* diphenylethane.
- ¹³C MAS NMR signal at 73 ppm upon disproportionation of ethyl[α-¹³C]benzene on medium-pore zeolite ZSM-5 (10-ring windows) supports a mechanism *via* dealkylation, ethoxy formation, and realkylation.

Experimental methods:

- pulsed-flow MAS NMR technique allows H/D exchange experiments at high temperatures with well-defined starting point.
- combination of *in situ* MAS NMR and *in situ* UV/Vis spectroscopy in one probe gives complementary information on the systems under study.

Thanks to

studies:

Jun Huang Yijiao Jiang Jörg Frey Arne Bressel Reddy Marthala Wei Wang Yean Sang Ooi financial support:

Deutsche Forschungsgemeinschaft

Fonds der Chemischen Industrie

Volkswagen Foundation

