Institut für Technische Chemie

In situ MAS NMR spectroscopy under flow conditions: State of the art and applications

MDR XIX, June 25, 2007

Michael Hunger

Components of heterogeneous reaction systems

Batch contra flow experiments

batch experiments, external reaction

- sealed samples
- heating in an external stove

batch experiments, in situ reaction

- sealed samples
- high-temperature solid-state
 NMR probes
- go-and-stop studies using a Laser heating system

characteristics:

- accessible with commercial equipments
- infinite contact times

- flow experiments, external reaction
 - reaction in an external reactor
 - transfer of the loaded catalysts after quenching the reaction
- flow experiments, *in situ* reaction
 - continuous injection of reactants into the MAS NMR rotor reactor
 - high-temperature solid-state
 - NMR probes

characteristics:

- self-made equipments
- study of reactions under staedy state conditions

Institut für Technische Chemie

Experimental techniques of flow MAS NMR spectroscopy

• Hamiltonians of the solid-state interactions of spins:

$$H_{\text{total}} = H_0 + H_{\text{QI}} + H_{\text{DI}} + H_{\text{CS}} + H_{\text{J}}$$

- *H*₀: Zeeman interaction γ·*h*·*l*_z·*B*₀ of nuclear spins *I* in the external magnetic field *B*₀ $ν_0 ≤ 10^9 \text{ s}^{-1}$
- *H*_{Ql}: interaction of the electric quadrupole moment of the resonating nuclei with the electric field gradient

 $v_{\rm QI} \le 5 \times 10^6 \ {\rm s}^{-1}$

- H_{DI} :dipolar interaction with the magnetic dipole moments of nuclei in their
vicinity $v_{DI} \le 5 \times 10^4 \text{ s}^{-1}$
- H_{CS} :shielding interaction caused by the electron shell around the resonating
nuclei $\nu_{CS} \le 5 \times 10^3 \text{ s}^{-1}$
- *H*_J: indirect or J-coupling of nuclei via their bond electrons $v_1 \le 5 \ge 10^2 \text{ s}^{-1}$


```
spin l > \frac{1}{2}:

• double oriented rotation (DOR)

v_{2QI} = f \{35\cos^4\Theta - 30\cos^2\Theta + 3\}

\Theta = 30.6^{\circ}

\Theta = 70.1^{\circ}
```

- multiple-quantum MAS NMR (MQMAS)
 - sampling of three- and fivequantum transitions
 - recording of spin-echoes free
 - of anisotropic contributions

Ex situ go-and-stop technique using an external reactor

- pulse-quench technique:
 - conversion of reactants in an external fixed-bed reactor
 - rapid stopping of the reaction by pre-cooled nitrogen gas
- NMR investigations:
 - transfer of the catalyst loaded with reaction products into an MAS NMR rotor
 - measurements performed at room temperature

D.H. Barich et al., J. Phys. Chem. B 102 (1998) 7163.

Ex situ approach for batch and flow experiments in an external reactor

- apparatus for evacuation, loading and catalysis on solid materials in an external reactor
- no contact to air during the transfer of the catalyst material into an MAS NMR rotor
- sealing of the MAS NMR rotor inside the apparatus

Approaches for in situ flow MAS NMR spectroscopy

C. Keeler et al., Catal. Today 49 (1999) 377.

P.K. Isbester et al., Catal. Today 49 (1999) 363.

injection of reactants into a spinning MAS NMR rotor reactor

M. Hunger, T. Horvath, J. Chem. Soc., Chem. Commun. (1995) 1423.

Technique of in situ flow MAS NMR

• modified 4 mm Bruker MAS NMR probe equipped with an injection system

A. Buchholz et al., Microporous & Mesoporous Mater. 57 (2003) 157.

Types of flow experiments I

- continuous-flow experiment:
 - study of adsorption or conversion of reactants at constant or different temperatures
 - study of formation of stable deposits of catalyst deactivatrion
- switched-flow experiment:
 - change of isotopic enrichment in reactants
 - study of the response of the composition of reaction products or deposits on the change of reactants

Types of flow experiments II

- stopped-flow experiment:
 - preparation of intermediates on the catalyst
 - study of the reactivity and conversion of intermediates at constant or different temperatures
- pulsed-flow experiment:
 - study of the time dependence of the conversion of reactants
 - study of the isotopic exchange of reactants at high temperatures

Pulsed-flow technique

• injection of liquid reactants into the spinning MAS NMR rotor via a micro-pulse pump

• pump Mikro g/5 of Fa. ProMinent, Germany, for single pulses with volumes of 2 to 50 μl

coupling of MAS NMR and UV/Vis spectroscopy by installation of a quartz fiber at the bottom of the MAS NMR stator

Technique of in situ flow MAS NMR

7 mm flow Bruker MAS NMR probe equipped with a glass fiber (left) and UV/Vis light source and spectrometer of Avantes (bottom)

M. Hunger, W. Wang, Chem. Commun. (2004) 584.

Flow experiments with laser-polarized xenon

- continuous injection of laser-polarized xenon:
 - optical pumping of the D1 transition of rubidium
 - spin exchange between excited rubidium atoms and the xenon atoms by gas phase collisions

- typical applications:
 - study of the meso- and micropore systems of solid catalyst and adsorbents
 - study of the location of adsorbate complexes upon in situ adsorption of reactants

A. Nossov et al., Phys. Chem. Chem. Phys. 5 (2003) 4479.

Institut für Technische Chemie

Applications of flow MAS NMR spectroscopy in materials science and heterogeneous catalysis

Advantage of MAS for NMR studies of laser-polarized xenon in porous solids

- solid-state ¹²⁹Xe NMR spectroscopy of laser-poarized xenon adsorbed on zeolite ITQ-6:
 - helium flow of 100 cm³ min⁻¹
 with 1 % hyperpolarized xenon
 - repetition time of 1 s in magnetic field of 7.0 T
 - sufficient resolution requires application of MAS
- signal assignment:
 - signal at 65 ppm is xenon in the interlamellar space
 - signal at 100 ppm is xenon in small cages
 - signal at 135 ppm corresponds to xenon in channels

A. Nossov et al., Phys. Chem. Chem. Phys. 5 (2003) 4479.

Study of xenon exchange dynamics in zeolite ITQ-6

- 2D-exchange ¹²⁹Xe MAS NMR of laser-poarized xenon adsorbed on zeolite ITQ-6:
 - helium flow of 100 cm³ min⁻¹
 with 1 % hyperpolarized xenon
 - magnetic field of 7.0 T
 - v_{rot} = 3 kHz, repetition time of 2 s, and 8 scans per spectrum
 - mixing time of 50 ms
- cross peaks indicate xenon exchange between:
 - a) gas phase and the interlamellar space
 - b) cavities and the interlamellar space
 - c) channels and cavities

A. Nossov et al., Phys. Chem. Chem. Phys. 5 (2003) 4479.

Study of the location of reactant molecules in porous catalysts

- ¹²⁹Xe MAS NMR of laser-poarized xenon on silicalite-1:
 - helium flow with 1 % hyperpolarized xenon
 - magnetic field of 7.0 T
 - $v_{\rm rot} = 3.5 \, \rm kHz$
 - signal at 103 ppm caused by xenon in empty 10-ring channels
- pulse-like addition of benzene (1.3 %):
 - resonance shift to left due to adsorption of benzene in 10-ring channels (b, d, f)
 - resonance shift to right due to desorption of benzene, i.e, 1.5 h later (c, e)

I.L. Moudrakovski et al., Chem. Mater. 12 (2000) 1181 .

Study of the coordination change of aluminum in H-SAPO-34

Mesoporous Mater. 57 (2003) 157.

Study of the coordination change of aluminum in H-SAPO-34

 first step of water adsorption:
 exclusive adsorption at SiOHAI (spectra a-c)

- second step of water adsorption:
 - coordination to AIO₄
 tetrahedra leading to
 octahedrally coordinated
 framework AI (spectra d, e)

A. Buchholz et al., Microporous Mesoporous Mater. 57 (2003) 157.

Study of toluene hydrogenation on Pt/ZrO₂-SO₄ under continuous-flow conditions

- ¹H MASNMR spectroscopy under continuous flow of H₂:
 - hydrogen flow of 100 cm³ min⁻¹
 with 1 % hyperpolarized xenon
 - 16 scans per spectrum with repetition time of 10 s in magnetic field of 9.4 T
 - sample spinning rate of 2.1 kHz
- signal assignment:
 - signals at 2.1-2.6 ppm and 6.9-7.6 ppm due to toluene
 - signals at 0.9-1.8 ppm are caused by methylcyclohexane
 - change of signals is fully reversible uppon variation of reaction temperature

V. Sundaramurthy et al, C.R. Chimie 9 (2006) 459.

Study of the synthesis of methyl-tert-butylether (MTBE) on zeolite H-Beta

- ¹³C MAS NMR spectroscopy under continuous flow of isobutene and methanol:
 - 720 scans per spectrum with repetition time of 10 s in magnetic field of 9.4 T
 - sample spinning rate of 2.5 kHz
 - isotops in natural abundance
- signal assignment:
 - 32 and 50 ppm: due to methyl groups of isobutene and methanol
 - 77-90 ppm: alkoxy species
 - 29 ppm: methyl groups of alkoxy species

T. Horvath et al, Appl. Catal. A: General 193 (2000) 227.

Study of the synthesis of MTBE on zeolite H-Beta under continuous-flow conditions

- ¹³C MAS NMR spectroscopy under continuous flow of isobutene and methanol:
 - flow of W_{cat}/F_{ib} = 150 gh/mol
 - 720 scans per spectrum with repetition time of 10 s in magnetic field of 9.4 T
 - sample spinning rate of 2.8 kHz
- message:
 - simultaneous change of the yield of MTBE (online GC) and signals of alkoxy species indicates catalytic role of these surface compounds

T. Horvath et al, Appl. Catal. A: General 193 (2000) 227.

Study of the side-chain H/D exchange of ethylbenzene on dealuminated zeolite Y

- ¹H MAS NMR studies under pulsed-flow conditions:
 - steamed zeolite deH-Y

 $(n_{\rm Si}/n_{\rm Al}=5.4)$

- pulses of 7.8 mg ethyl-*d*₅benzene
- 32 scans per spectrum with repetition time of 10 s at 9.4 T
- sample spinning rate of *ca.* 2 kHz
- message:
 - regioselective H/D exchange at 443 to 463 K (¹H MAS NMR)
 - different types of carbenium ions (UV/Vis)

J. Huang et al, submitted.

Study of the side-chain H/D exchange of ethylbenzene on dealuminated zeolite Y

 in situ pulsed-flow ¹H MAS NMR study of the regioselective H/D exchange of the side-chain of ethyl-d₅-benzene on dealuminated zeolite deH-Y (n_{Si}/n_{Al} = 5.4, 22 Al^{ex}/u.c, 10.9 SiOHAI /u.c)

- message:
 - activation energy of the regioselective H/D exchange (194 kJ/mol) indicates that a hydride transfer reaction is the rate determining step
 - J. Huang et al, submitted.

Mechanism of the regioselctive side-chain H/D exchange of ethylbenzene on deH-Y

- ¹H MAS NMR results:
 - selective H/D exchange of methyl groups (1.2 ppm)
 - activation energy of 194 kJ/mol indicates hydride transfer
- UV/Vis results:
 - ethylcyclohexadienyl carbenium ions at BAS (400 nm), A
 - sec-ethylphenyl carbenium ions at LAS (450 nm), B
 - styrene at BAS (300 nm), C

J. Huang et al, submitted.

Methanol-to-olefin (MTO) conversion on acidic zeolites

reaction mechanisms proposed in the literature:

- carbene mechanism (Swabb and Gates)
- oxonium ylide mechanism (Berg and Olah)
- carbon-pool mechanism (Haag, Hoelderich)

H. Schulz, M. Wei, Microporous Mesoporous Mater. 29 (1999) 205.

Role of alkylated carbon pool compounds in the MTO process

switching of the reactant flow induces a decrease of the ¹³C-isotopes in the alkyl groups:

- alkyl groups are involved in the formation of olefins
- carbon pool plays an active role in the MTO process

M. Seiler et al., Catal. Lett. 88 (2003) 187.

In situ ¹³C MAS NMR-UV/Vis spectroscopy of coke formation on H-SAPO-34 at 523 to 673 K for 3 h under continuous-flow conditions

NMR:

- quantitative evaluation
- separation of alkyl groups and aromatics
- rotor reactor comparable with fixed-bed reactor

UV/Vis:

- sensitive for carbenium cations
- separation of aromatics and polycyclic aromatics

UV/Vis bands (π - π * transitions) observed during methanol-to-olefin conversion on H-SAPO-34 at 523-673 K

Bands at <i>v</i> / nm	Assignments
220-245	neutral dienes
254-280	neutral aromatics and polyalkylaromatics
270	neutral phenols
300-320	monoenylic carbenium ions
345-380	dienylic carbenium ions
390-410	neutral polycyclic aromatics
430-470	trienylic carbenium ions

Ref.: H.G. Karge et al., Stud. Surf. Sci. Catal. 49 (1989) 1327; J. Mohan, Organic Spectroscopy Principles and Applications, Alpha Science International Ltd., Harrow, U.K., 2002, p. 137; A.V. Demidov, Mater. Chem. Phys. 39 (1994) 13; I. Kirisci et al., Chem. Rev. 99 (1999) 2085; R. Ahmad et al., J. Catal. 218 (2003) 365-374. Occluded and stable organic deposits formed by conversion of methanol (W/F = 25 gh/mol) on H-SAPO-34 at 673 K for 3 h

decrease of dienes (245 nm) and polyalkylaromatics (280 nm)

stable polycyclic aromatics (400 nm)

Quantitative evaluation of the ^{13}C MAS NMR spectra of used H-SAPO-34 before and after purging with N_2

Signal at $\delta_{\! 13C}$ /ppm	Assignments	Number in mmol/g			
		reaction at 623 K	reaction at 673 K	purging with N ₂ at 673 K	
16-21	methyl groups bound to aromatics	1.87	0.53	0.31	
14-15 and 22-29	ethyl groups bound to aromatics	0.21	0.08	0.03	
23-24 and 33-37	isopropyl groups bound to aromatics	0.15	-	-	
125-137	alkylated and non- alkylated aromatic rings	0.55	0.56	0.41	

agrees with the stronger decrease of UV/Vis bands of alkylated aromatics (280 nm) than of polycyclic aromatics (400 nm)

Regeneration of the used (673 K) H-SAPO-34 by purging with synthetic air (20 vol.-% O_2 , 30 ml/min) at 673 and 773 K for 2 h

Quantitative evaluation of the ¹³C MAS NMR spectra of used H-SAPO-34 regenerated by purging with synthetic air for 2 h

Signal at $\delta_{ m 13C}$ /ppm	Assignments	Number in mmol/g		
		reaction at 673 K	syn. air at 673 K	syn. air at 773 K
16-21	methyl groups bound to aromatics	0.53	-	-
14-15 and 22-29	ethyl groups bound to aromatics	0.08	-	-
125-137	alkylated and non- alkylated aromatic rings	0.56	0.17	0.05
145-155	carbon in aromatics bound to oxygen atoms	-	0.45	0.13

nearly total removal of aromatics (UV/Vis bands at 280 nm and 400 nm), but formation of oxygenated spieces (270 nm)

Advantages of *in situ* flow MAS NMR spectroscopy in materials science and heterogeneous catalysis:

- allows application of laser-polarized xenon for studies of pore systems in solid materials and location of adsorbate complexes
- different flow protocols lead to a number of experiments with different messages
- required lifetime of intermediates in the case of continuous-flow experiments corresponds to duration of free induction decay
- response of spectroscopic parameters on the change of reaction conditions may deliver hints to a catalytic role of surface species
- combination with other analytical methods leads to complementary messages

Acknowledgements

Thomas Horvath Michael Seiler Udo Schenk Andreas Buchholz Wei Wang Yijiao Jiang Jun Huang Reddy Marthala German Research Foundation

Volkswagen Foundation Hannover

Max Buchner Research Foundation

Fonds der Chemischen Industrie

Temperature behavior of the flow MAS NMR probe

• ²⁰⁷Pb MAS NMR of Pb(NO₃)₂:

 $\Delta T / \Delta \delta$ = 1.29 K / ppm *

 modified 7 mm Doty MAS NMR probe DSI-740:

 $v_0 = 83.2 \text{ MHz}$

 $v_{\rm rot}$ = 2.5 kHz

*F*_{N2} = 15 ml/min

* D.B. Ferguson et al., Anal. Chem. 67 (1995) 3342.