Institute of Chemical Technology

Solid-state NMR characterization of Broensted acid sites in solid catalysts

Michael Hunger

Institute of Chemical Technology University of Stuttgart, Germany

Different types of OH groups in zeolites

structure of zeolite Y (FAU: faujasite):

Broensted acid sites:

bridging OH group, SiOHAI

- results of modification:
 - formation of OH groups at multivalent cations, Mⁿ⁺(OH)_x
 - dehydroxylation of SiOHAl groups
 - formation of OH groups at extra-framework species
 - formation of defect sites, SiOH

Resonances available for NMR of Broensted acid sites

- 1. Experimental techniques of NMR on Broensted acid sites
- 2. Assignment of surface OH groups
- 3. Formation of OH groups and their dehydroxylation
- 4. Characterization of the acid strength of surface OH groups
- 5. Reactivity of the hydroxyl protons studied by H/D exchange
- 6. Study of the location OH groups in porous catalysts
- 7. Mobility of hydroxyl protons at elevated temperatures

1. Experimental techniques of NMR

on Broensted acid sites

• Hamiltonians of the magnetic interactions of spins I = 1/2:

$$H_{\text{total}} = H_0 + H_{\text{DI}} + H_{\text{CS}} + H_{\text{J}}$$

- H_0 :Zeeman interaction $\gamma \cdot h \cdot I_z \cdot B_0$ of nuclear spins I in the external magneticfield B_0 $\nu_0 \leq 10^9 \text{ s}^{-1}$
- H_{DI} :dipolar interaction with the magnetic dipole moments of nuclei in their
vicinity $v_{DI} \le 5 \times 10^4 \text{ s}^{-1}$

$$H_{\text{hetero.DI}} = \gamma_i \gamma_k \hbar^2 \frac{\mu_0}{4\pi} \quad \frac{1}{r_{ik}^3} \left(\frac{1 - 3\cos^2 \beta_{ik}}{2} \right) I_{\text{zi}} I_{\text{zk}}$$

- vector between interacting nuclei *i* and *k*: r_{ik} - angle between B_0 and r_{IS} : β_{ik}

- H_{CS} :shielding interaction caused by the electron shell around the resonating
nuclei $\nu_{CS} \le 5 \times 10^3 \text{ s}^{-1}$
- *H*_J: indirect or J-coupling of nuclei via their bond electrons

 $v_{\rm J} \le 5 \ge 10^2 \ {\rm s}^{-1}$

• study of activated samples requires exclusion of rehydration

2. Assignment of surface OH groups

Shift ranges of ¹H MAS NMR signals of OH groups

Correlation of OH-O distance and shift

• dependence of the low-field shift $\Delta \delta_{1H}$ on the OH-O distance d_{OH-O}

 $\Delta \delta_{1H}$ / ppm = 79.05 - 0.255 d_{OH-O} / pm

J.P. Yesinowski, H. Eckert, J. Am. Chem. Soc. 109 (1987) 6274

CaOH groups in the sodalite cages of zeolite Ca,Na-Y:

- OH-O distance of $d_{OH-O} = 0.297$ nm to the next nearest framework oxygen atom
- calculated low-field shift of $\Delta \delta_{1H}$ = 3.3 ppm agrees with the experimental value of 2.8 to 3.2 ppm

LaOH groups in the sodalite cages of zeolite La,Na-Y:

- experimental low-field shift of $\Delta \delta_{1H}$ = 5.6 ppm gives an OH-O distance of d_{OH-O} = 0.288 nm

M. Hunger, Catal. Rev.-Sci. Eng. 39 (1997) 345.

• resolution of ¹H MAS NMR and FTIR spectra of dehydrated zeolite H-ZSM-5 ($n_{Si}/n_{AI} = 20$)

residual ¹H MAS NMR linewidths:

SiOH $\Delta v_{1/2} = 200 - 400 \text{ Hz}$ AIOH $\Delta v_{1/2} = 500 - 600 \text{ Hz}$ SiOHAI $\Delta v_{1/2} = 200 - 450 \text{ Hz}$ SiOHAI $\Delta v_{1/2} = 2500 - 3500 \text{ Hz}$

M. Hunger et al., Microporous Mater. 6 (1996) 349.

Comparison of ¹H MAS NMR and FTIR spectroscopy

• plot of shifts δ_{1H} and wavenumbers v_{OH} of bridging and metal OH groups in zeolites

asterisks indicate small cages or pores

E. Brunner, H.G. Karge, H. Pfeifer, Z. Phys. Chem. 176 (1992) 173.

Correlation of ¹H MAS NMR and FTIR

• relationship between ¹H NMR shift δ_{1H} and stretching vibration mode v_{OH} of isolated OH groups in zeolites δ_{1H} / ppm = 57.1 - 0.0147 v_{OH} / cm⁻¹

and for hydrogen bonded OH groups*

 δ_{1H} / ppm = 37.9 - 0.0092 v_{OH} / cm⁻¹

type of OH group	<i>v</i> _{ОН} / ст⁻¹	calc. $\delta_{ m 1H}$ / ppm	exp. δ_{1H} / ppm
SiOH	3740	2.1	1.8
AIOH*	3654	4.2	3.0
SiOHB	3720	2.4	2.5
SiOHAI	3640	3.6	3.6

E. Brunner, H.G. Karge, H. Pfeifer, Z. Phys. Chem. 176 (1992) 173.

Comparison of FTIR and ¹H MAS NMR

*) determination of OH concentration by ¹H MAS NMR:

- measurement of the intensity of the material under study (I_{OH}) and of an external reference (I_{ref}) with identical parameters (number of scans, receiver gain etc.),
- determination of the weight of the dehydrated sample (m_{OH}) inside to MAS NMR rotor,
- calculation of the OH concentration according to:

 $(n_{\text{OH}} / \text{g}) = (n_{\text{ref}} / \text{g}) \times (m_{\text{ref}} / m_{\text{OH}}) \times (I_{\text{OH}} / I_{\text{ref}})$

reference: e.g. dehydrated zeolite 35H,Na-Y with weight m_{ref} and n_{ref} hydroxyl groups per g

3. Formation of OH groups and their dehydroxylation

Preparation of OH groups via the NH₄-form

Dealumination of zeolites H,Na-Y

dehydroxylation is accompanied by strong dealumination, strong modification of the acidity or damage of the framework ¹H MAS NMR study of zeolites H,Na-Y dehydroxylated by steaming

J. Jiao et al., J. Phys. Chem B. 108 (2004) 14305.

Preparation via the Hirschler-Plank mechanism

J. Huang et al., Microporous Mesoporous Mater. 104 (2007) 129.

Dehydroxylation of zeolite La,Na-Y/74

only a negligible dealumination occurs during dehydroxylation, the Hirschler-Plank mechanism is a reversible process

J. Huang et al., Microporous Mesoporous Mater. 104 (2007) 129.

4. Characterization of the acid strength of surface OH groups

Acid strength of OH groups on solid catalysts

• characterization of acid strength *via* proton transfer or H-bond formation

low-field shift $\Delta \delta_{1H}$ of the ¹H MAS NMR signal of SiOHAI groups upon adsorption of acetonitrile (CD₃CN):

sample	$\Delta \delta_{ m 1H}$ / ppm
H-ZSM-5 (52)	7.1
H-Y(18)	7.0
H-MOR (10)	6.7
H-MOR (6.7)	6.2
H-Y (5)	6.4

Adsorption of CD₃CN on zeolites La,Na-X and La,Na-Y

• characterization of acid strength via H-bond-induced low-field shift $\Delta \delta_{1H}$

acid strength: 42La,Na-X(1.4) < 75La,Na-X(1.4) < 42La,Na-Y(2.7) = 75La,Na-Y(2.7)</p>

J. Huang et al., Microporous Mesoporous Mater., in press.

Correlation of the resonance position of noninteracting OH groups and low-field shift $\Delta \delta_{1H}$

calculation of the deprotonation energy via the resonance position of isolated OH

 $\Delta E / kJ mol^{-1} = -84 (\delta_{1H} - \delta_{1H}^{SiOH})$ with $\delta_{1H}^{SiOH} = 2.0 ppm$

and via low-field shift upon adsorption of C_2CI_4 at low temperature (77 K)

 ΔE^{lfs} / kJ mol⁻¹ = -442.48 log ($\delta_{1\text{H}}$ / $\Delta \delta_{1\text{H}}^{\text{SiOH}}$) with $\Delta \delta_{1\text{H}}^{\text{SiOH}}$ = 0.75 ppm

sample	OH type	$\delta_{ m 1H}$ / ppm *)	∆ E / kJ mol -¹	$\Delta \delta_{ m 1H}$ / ppm	∆ <i>E</i> ^{lfs} / kJ mol⁻¹
30H,Na-Y	SiOHAI	3.9	160	1.6	146
H-ZSM-5	SiOHAI	4.2	185	1.9	179
deH-ZSM-5	SiOHAI	4.3	193	1.9	179

*) not affected by hydrogen bondings

H. Sachsenroeder et al., Microporous Mater. 6 (1996) 341.

Iow-temperature ¹H broad-line NMR of partially hydrated acids

content of H₃O⁺, i.e., the ionization coefficient C_{ion} is suggested as acidity scale

P. Batamack et al., J. Phys. Chem. 97 (1993) 9779.

Adsorption of C₆D₅N on zeolites La,Na-X and La,Na-Y

identification of strongly acidic OH groups via proton transfer

J. Huang et al., Microporous Mesoporous Mater., in press.

Survey on NMR probes for Broensted acid sites

Surface site	Probe molecule	Resonance / Effect
Brønsted acid sites:	pyridine-d ₅	¹ H: hydrogen-bonded pyridine at ca. $\delta_{1H} = 10$ ppm (SiOH) and pyridinium ions at $\delta_{1H} = 12$ to 20 ppm (SiOHAI)
	acetonitrile-d ₃	¹ H: adsorbate-induced low-field shift by $\Delta \delta_{1H} = 4.3$ (H-Y) to 7.1 ppm (H-ZSM-5)
	trichloroacetonitrile	¹ H: adsorbate-induced low-field shift by $\Delta \delta_{1H} = 3.0$ (H-Y) to 4.9 ppm (H-ZSM-5)
	perchloroethylene	¹ H: adsorbate-induced low-field shift by $\Delta \delta_{1H} = 0.75$ (SiOH) to 1.9 ppm (SiOHAI)
	perfluorotributyl amine	¹ H: adsorbate-induced low-field shift of accessible OH groups by $\Delta \delta_{1H} = 0.23$ (SiOH) to 0.47 ppm (AIOH)
	deuterated alkanes and aromatics	¹ H: H/D exchange, activation energy
	¹³ C-2-acetone	¹³ C: hydrogen-bonded acetone at δ_{13C} = 216.8 (H-SAPO-5) to 225.4 ppm (H-ZSM-22)
	¹⁵ N-pyridine	¹⁵ N: hydrogen-bonded pyridine at δ_{15N} = 295 ppm and pyridinium ions at 198 ppm

M. Hunger, J. Weitkamp, in: In-situ Spectroscopy of Catalysts, B.M. Weckhuysen (ed.), ASP, Stevenson R., 2004, p. 175.

comparison of different acidity scales

J.F. Haw et al., Acc. Chem. Res. 29 (1996) 259.

5. Reactivity of hydroxyl protons studied by H/D exchange

H/D exchange between deuterated reactants and protons of surface OH groups

J. Huang et al., Microporous Mesoporous Mater. 99 (2007) 86.

H/D exchange between deuterated reactants and protons of surface OH groups

H/D exchange with deuterated alkylaromatics on zeolites H,Na-Y, La,Na-Y, and H-ZSM-5

correlation of activation energies E_A of H/D exchange and low-field shifts $\Delta \delta_{1H}$ upon adsorption CD₃CN:

catalyst	molecule	E _A / kJ mol ⁻¹	$\Delta \delta_{ m 1H}$ / ppm
H,Na-Y	benzene	76	5.1
La,Na-Y	benzene	67	5.7
H-ZSM-5	benzene	46	7.9
H,Na-Y	benzene	76	
	ethylbenzen	e 41	
	toluene	32	
	p-xylene	27	

J. Huang et al., Microporous Mesoporous Mater. 99 (2007) 86.

Evaluation of reaction mechanisms by H/D exchange on acidic zeolites

H/D exchange of propane-d₈ (A) and isobutane-d₁₀ (B) with SiOHAI groups on H-ZSM-5

A.G. Stepanov et al., Catal. Lett. 54 (1998) 1; J. Sommer et al., J. Catal. 181 (1999) 265.

6. Study of the location of OH groups in porous catalysts

Distribution of OH on the outer and inner surface

¹H MAS NMR studies of zeolites loaded with perfluorotributylamine (Ø: 0.94 nm)

the outer surface is exclusively covered by SiOH (1.8 ppm) and AIOH (2.4 ppm) groups with sligthly increase acid strength upon Mo modification

W. Zhang et al., Chem. Commun. (1999) 1091.

Distribution of SiOHAI groups in zeolites

SiOHAI groups are preferentially formed at Si-O-AI bridges with Si(nAI) atoms having a maximum number n of framework aluminum atoms in their vicinity

M. Hunger et al., Microporous Mater. 1 (1993) 17.

Distribution of SiOH groups in zeolites

cross peaks (*) indicate that some of the defect SiOH groups are located close to SiOHAI groups, i.e., inside the pores

M. Hunger, Microporous Mater. 6 (1996) 1.

7. Mobility of hydroxyl protons at elevated temperatures

Effect of proton mobility on the ¹H MAS NMR spectrum

 free induction decay G(t) of an ¹H MAS NMR experiment:

 $G(t) = \exp \{-(M_2/3) [2J(v_{rot}, \tau_c, t) + J(2v_{rot}, \tau_c, t)] \}$

- *M*₂: second moment, strength of dipolar interaction, 4.5⁻10⁸ s⁻²
- v_{rot} : sample spinning rate, 3 kHz
- $\tau_{\rm c}$: correlation time of thermal mobility, 10 µs to 10 ms

thermal mobility leads to strong broadening of the MAS NMR spectra, simulation allows to determine the correlation time

M. Hunger, Catal. Rev.-Sci. Eng. 39 (1997) 345.

Study of the mobility of hydroxyl protons by the ¹H MAS NMR

M. Hunger, Solid State Nucl. Magn. Reson. 6 (1996) 1.

temperature dependence (T = 296 – 658 K) of the intensities of ¹H MAS NMR sidebands:

sample	activation energy	
H,Na-Y H-MOR H-ZSM-5	61 kJ mol ⁻¹ 54 kJ mol ⁻¹ 45 kJ mol ⁻¹	$\rightarrow \qquad \begin{array}{c} \text{H-ZSM-5:} \\ \tau_{\rm c} = 251 \ \mu \text{s at } T = 423 \ \text{K} \end{array}$

P. Sarv et al., J. Phys. Chem. 99 (1995) 13763.

Solid-state NMR characterization of Broensted acid sites in solid catalysts:

- techniques for well-defined preparation and handling of activated solid catalysts
- resolution of ¹H MAS NMR comparable with FTIR; correlation of signals is possible
- direct quantitative evaluation of the signal intensities gives concentration of OH groups
- different routes of OH formation in zeolites lead to different thermal stabilities and dehydroxylation behaviors
- there are different scales of acid strength, such as low-field shift of the ¹H MAS NMR signal upon adsorption of probe molecules and the ionization coefficient upon water adsorption
- the activation energy of H/D exchange between deuterated reactants and surface OH groups correlates with above-mentioned scales of acid strength
- location of OH groups in porous catalysts can be studied by spin-transfer and -exchange experiments and probe molecules with well-defined size
- catalytically active hydroxyl protons are mobile under reaction conditions

Acknowledgements

Thomas Horvath Udo Schenk Michael Seiler Andreas Buchholz Mingcan Xu Jian Jiao Jun Huang Reddy Marthala

Dieter Freude (Uni Leipzig) Stefan Steuernagel (Bruker) Deutsche Forschungsgemeinschaft

Volkswagen-Stiftung Hannover

Max-Buchner-Forschungsstiftung

Fonds der Chemischen Industrie