Institute of Chemical Technology

Dry-gel Synthesis of Microporous and Mesoporous Solid Catalysts

Michael Hunger

Institute of Chemical Technology University of Stuttgart, Germany

Cracow, Poland, March 5, 2006

Principle of hydrothermal synthesis

In 1990, Xu *et al.* described a novel method for the synthesis of ZSM-5 [1]:

- a gel was prepared from aluminum sulphate, sodium silicate and sodium hydroxide; after drying the gel, it was placed on a porous plate in an autoclave
- at its bottom, the autoclave contained a solution of ethylenediamine and triethylamine in water
- there was no contact between the dry gel and the liquid phase
- after 5 to 7 days at 453 K, ZSM-5 (MFI) had formed
- the synthesis method was referred to as the "vapour method"

[1] W. Xu, J. Dong. J. Li, J. Li, F. Wu, Chem. Commun. (1990) 755.

Dry-gel conversion (DGC) methods

M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, E. Kikuchi, Top. Catal. 9 (1999) 77.

Vapor-phase transport syntheses (VPT):

- ZSM-5 (MFI), W. Xu, J. Dong. J. Li, J. Li, F. Wu, Chem. Commun. (1990) 755.
- ZSM-22 (TON), S.G. Thoma, D.E. Trudell, F. Bonhomme, T.M. Nenoff, Microporous Mesoporous Mater. 50 (2001) 33.
- AIPO₄-5 (AFI), AIPO₄-11 (AEL), M. Bandyopadhyay, R. Bandyopadhyay, Y. Kubota, Y. Sugi, Chem. Lett. (2000) 1024.
- ZnAPO-34 (CHA), L. Zhang, G.R. Gavalas, Chem. Commun. (1999) 97.

Steam-assisted conversion syntheses (SAC):

- Beta (BEA), P.R.H.P. Rao, M. Matsukata, Chem. Commun. (1996) 1441.
- Faujasite (FAU), M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, E. Kikuchi, Top. Catal. 9 (1999) 77.
- EMT (EMT), M. Matsukata, K. Kizu, M. Ogura, E. Kikuchi, Cryst. Growth Des. 1 (2001) 509-516.
- NU-1 (RUT), A. Bhaumik, T. Tatsumi, Microporous Mesoporous Mater. 34 (2000) 1.

Steam-assisted conversion syntheses (SAC):

- ZSM-5 (MFI), ZSM-12 (MTW), R. Bandyopadhyay, Y. Kubota, N. Sugimoto, Y. Fukushima, Y. Sugi, Microporous Mesoporous Mater. 32 (1999) 81.
- SAPO-5 (AFI), SAPO-11 (AEL), AIPO₄-5 (AFI), AIPO₄-11 (AEL), M. Bandyopadhyay, R. Bandyopadhyay, Y. Kubota, Y. Sugi, Chem. Lett. (2000) 1024.
- SAPO-34 (CHA), M. Bandyopadhyay, R. Bandyopadhyay, S. Tawada, Y. Kubota, Y. Sugi, Appl. Catal. A: General 225 (2002) 51.

- Selected zeolite syntheses: [Ga]Beta (BEA), [AI]Beta (BEA), [Ga]EU-1 (EUO), and [AI]EU-1 (EUO)
- Insight into the chemistry of dry-gel synthesis of zeolites
- Catalytic characterization of the synthesized zeolites
- Dry-gel synthesis of MCM-41/ZSM-5 hydride materials
- Conclusions

Selected Zeolite Syntheses: [Ga]Beta (BEA), [Al]Beta (BEA), [Ga]EU-1 (EUO), and [Al]EU-1 (EUO)

- ageing at room temperature
- drying at 353 K
- crystallization by dry-gel conversion under water vapor
- washing and drying of the product
- removal of the template by calcination at 723 K (Beta) or 813 K (EU-1)

SAC syntheses of zeolites [Ga]Beta and [Al]Beta

SAC syntheses of zeolite [Ga]Beta

influence of the amount of water in the autoclave:

- the amount of water has a significant influence on the crystallization process
- at 453 K and V_{H2O} > 0.5 cm³, there is liquid water present in the autoclave

Zeolites [Ga]Beta and [Al]Beta obtained by SAC syntheses

- n_{Si}/n_{Ga}-ratios of [Ga]Beta zeolites prepared via hydrothermal syntheses: 13 [1] to 63 [2]
- n_{Si}/n_{Ga}-ratios of [Ga]Beta zeolites made by the dry-gel conversion method: 8, 14, 19, 34, 37, 72
- characteristic samples:

No.	Ga source	$\left(\frac{n_{\rm Si}}{n_{\rm T}}\right)_{\rm chem.}^{\rm dry gel}$	$\left(rac{n_{\rm Si}}{n_{\rm T}} ight)_{\rm chem.}^{\rm zeolite}$	$\left(\frac{n_{\rm Si}}{n_{\rm T}}\right)_{\rm NMR}^{\rm zeolite}$
1	Ga(NO ₃) ₃	37.6	37.8	37.8
2	Ga_2O_3	8.5	8.0	11.6
	Al source			
3	$AI_2(SO_4)_3$	34.0	35.7	35.9
4	Pural SB	12.6	11.9	11.8

[1] M.L. Occelli, H.Eckert, A. Wölker, A. Auroux, Microporous Mesoporous Mater. 30 (1999) 219.
 [2] K.J. Chao, S.P. Sheu, L.-H. Lin, M.J. Genet, M.H. Feng, Zeolites 18 (1997) 18.

SAC syntheses of zeolites [Ga]EU-1 and [AI]EU-1

SAC syntheses of zeolites [AI]EU-1

influence of the amount of water in the autoclave:

- at 453 K and V_{H2O} > 0.5 cm³, there is liquid water present in the autoclave
- the amount of water has a significant influence on the crystallization process
- at least 1 cm³ of water is necessary to obtain highly crystalline EU-1 zeolites

range: *m*_{H2O} /*m*_{gel} > 0.67

SAC syntheses of zeolites [AI]EU-1

influence of the amount of template in the dry gel:

- minimum n_{HMBr}/n_{Si}-ratio of 0.11, at which pure [AI]EU-1 is obtained
- lower n_{HMBr}/n_{Si}-ratios give more α-quartz as impurity
- higher amounts of Na⁺ do not suppress the formation of α-quartz

 n_{Si}/n_{Ga}-ratios of [Ga]EU-1 zeolites prepared via hydrothermal syntheses (HMBr as template): 27 to 50 [1]

(<i>n</i> _{Si} / <i>n</i> _{Ga}) ^{dry gel}	(<i>n</i> _{Na} / <i>n</i> _{Si}) ^{dry gel}	(n _{Si} /n _{Ga}) ^{zeolite}	Product
10	0.30	11.7	[Ga]EU-1
13	0.30	15.1	[Ga]EU-1
27	0.30	29.0	[Ga]EU-1
50	0.30	-	amorphous
	0.47	45.1	[Ga]EU-1
100	0.30	-	amorphous
	0.50	85.6	[Ga]EU-1
	0.75	-	amorphous

[1] G.N. Rao, V.P. Shiralkar, A.N. Kotsthane, P. Ratnasamy, in: M.L. Occelli, H.E. Robson (Eds.), Synthesis of Microporous Materials, Volume 1, Molecular Sieves, van Nostrand Reinhold, New York, 1992, p. 153-166.

 n_{Si}/n_{Al}-ratios of [Al]EU-1 zeolites prepared via hydrothermal syntheses (HMBr as template): 16 to 60 [1]

dry gel	/ v	/zeolite	
$(n_{\rm Si}/n_{\rm Al})^{\rm arg}$	$(n_{\rm Na}/n_{\rm Si})^{\rm mysel}$	$(n_{\rm Si}/n_{\rm Al})^{$	Product
15	0.37	-	amorphous
	0.53	17.6	[AI]EU-1
27	0.30	28	[AI]EU-1
36	0.30	37	[AI]EU-1
50	0.30	54	[AI]EU-1
60	0.30	-	amorphous
	0.36	55.9	[AI]EU-1
100	0.30	104.4	EU-1 + EU-2
	0.51	66.1	[AI]EU-1
300	0.50	141.8	[AI]EU-1

[1] G.N. Rao, P.N. Joshi, A.N. Kotasthane, P. Ratnasamy, Zeolites 9 (1989) 483.

Insight into the Chemistry of the Dry-gel Synthesis

formation of zeolite particles already within the first 16 h

Synthesis of [Ga]Beta $(n_{Si}/n_{Ga} = 8.5)$: Particle morphology

SEM performed at different crystallization times:

dry-gel particles (ca. 30 µm) before DGC

zeolite particles (< 0.5 μm) obtained after 65 h

dissolution and rearrangement of the solid material

²⁹Si MAS NMR of zeolite [Ga]Beta $(n_{Si}/n_{Ga} = 8.5)$

Quantitative ¹H MAS NMR of calcined [Ga]Beta

strong increase of SiOH groups due to dissolution of dry-gel particles

²⁹Si MAS NMR of zeolite [Ga]Beta $(n_{Si}/n_{Ga} = 8.5)$

incorporation of gallium into the zeolite framework

Two-dimensional ⁷¹Ga MQMAS NMR spectroscopy of [Ga]Beta obtained after 65 h

Acid strength of zeolites Beta and EU-1

Catalytic Characterization of the Synthesized Materials

disproportionation of ethylbenzene:

Dry-gel Synthesis of MCM-41/ZSM-5 Hydride Materials Dry-gel synthesis procedure with a zeolite ZSM-5 hydrogel:

- preparation of a hydrogel for the synthesis of ZSM-5 with tetrapropylammonium hydroxide (TPAOH) as template and ageing of this gel for 18 h at 323 K
- the ZSM-5 hydrogel was added to cetyltrimethylammonium bromide (CTAB), stirred for 2 h at room temperature, and dried for 20 h at 353 K
- 3 g of the dry gel was placed in an autoclave (V = 110 ml) together with 4 g deionized water
- the dry-gel conversion was performed at 423 K for 24 to 72 h
- obtained samples are denoted MZH-*t* (MZH: MCM-41/ZSM-5 Hybride, *t*: duration of dry-gel conversion)

X-ray patterns of MZH-t materials

• TEM and SEM pictures recorded at different conversion times:

dry-gel conversion time of 36 h

dry-gel conversion time of 72 h

meso-structured material is totally converted to ZSM-5 crystals

characterization of the pore system by nitrogen adsorption

properties of MZH-*t* materials in comparison with a reference ZSM-5:

Sample	n _{si} /n _{ai}	BET surface area / m²⋅g⁻¹	V _{mesopore} / cm³⋅g⁻¹	V _{micropore} / cm³∙g⁻¹
MZH-24h	59	1248	0.82	0.01
MZH-36h	67	1126	0.76	0.06
H-ZSM-5	22	300	0.06	0.15

significant aluminum incorporation and micropore volume

²⁹Si MAS NMR of MZH-t materials

- ²⁹Si MAS NMR spectra recorded after different conversion times
- signals of MCM-41 domains:
 - -91 ppm:Q² silicon-99 .. -101 ppm:Q³ silicon-111 ppm:Q⁴ silicon
- signals of ZSM-5 domains:
 - -101 ppm:Q³ silicon-113, -115 ppm:Q⁴ silicon

¹H MAS NMR of MZH-t materials

strong increase of SiOHAI groups with increasing dry-gel conversion time

• types of hydroxyl groups:

1.8 ppm SiOH

4.0 ppm SiOHAI

behavior of SiOHAI groups:

acidic OH groups of zeolite domains

Acid strength of the MZH-36h material

- high effort of preparing the dry gel
- dry gel is chemically unstable
- amount of water in the autoclave is a sensitive parameter
- decrease of expensive structure-directing agents in the dry gel
- expansion of the range of chemical compositions of zeolites
- preparation mesoporous/microporous hybride materials

- A. Arnold, S. Steuernagel, M. Hunger, J. Weitkamp, *Insight into the dry-gel synthesis of gallium-rich zeolite [Ga]Beta*, Microporous Mesoporous Mater. 62 (2003) 97-106.
- A. Arnold, M. Hunger, J. Weitkamp, *Dry-gel synthesis of zeolites [AI]EU-1 and [Ga]EU-1*, Microporous Mesoporous Mater. 67 (2004) 205-213.
- M. Xu, W. Wang, J. Weitkamp, M. Hunger, *Dry-gel synthesis* of mesoporous *MCM-41 materials with modified pore structure*, Z. Phys. Chem. 219 (2005) 877-890.

TGA / DTA of zeolite [Al]EU-1

- T < 573 K: desorption of water
- T = 673-773 K: decomposition of template molecules
- T = 823-950 K: decomposition of template molecules, adsorbed on acid sites
- weight loss of the calcined samples of ca. 15 %
- similar curves obtained for [Ga]EU-1 zeolites

assignment of the DTA peaks:

R. Millini, L.C. Carluccio, A. Carati, W.O. Parker, Microporous Mesoporous Mater. 46 (2001) 191.

¹³C MAS NMR of the template molecules

