Nutzung der Festkörper-NMR-Spektroskopie für die Entwicklung und Charakterisierung von Feststoff-Katalysatoren

> Michael Hunger Institut für Technische Chemie Universität Stuttgart

Einweihung des Bruker-Avance-500WB-Spektrometers am Fachbereich Chemie der TU Kaiserslautern, 29. November 2011

Most abundant isotopes with nuclear spin

Isotopes interesting for solid-state NMR in heterogeneous catalysis

interesting isotopes (nuclear spin, relative sensitivity in comparison with ¹H)

Solid-state NMR of solid catalysts

Specific problems of solid-state NMR spectroscopy

detection limit of solid-state NMR is ca. $N = 10 \mu mol$ spins per gram for ¹H nuclei at room temperature

magnetization M_0 decreases with increasing temperature T

broadening of NMR signals due to internal solid-state interactions

most important solid-state interactions:

- H_{CSA} :anisotropic shielding of the magnetic field due to the anisotropic
electron density in the local structure of the resonating nuclei;
 $\mathcal{F} \{LP^{(2)}\}$ Δv_{CSA} up to 50 kHz
- H_{DI} : dipolar interaction with magnetic dipole moments of neighboring spins in the local structure; \mathcal{F} {LP⁽²⁾}

$\Delta v_{\rm DI}$ up to 100 kHz

 H_Q : quadrupolar interaction of the electric quadrupole moment of nuclei with spin *I* = 3/2, 5/2 etc. with electric field gradients; \mathcal{F} {LP⁽²⁾ + LP⁽⁴⁾} Δv_Q up to 20 MHz

Techniques of solid-state NMR spectroscopy

synthesis of zeolite [Ga,Al]Beta by steam-assisted dry-gel conversion (SAC)

structure of zeolite Beta (BEA)

A. Arnold et al., Microporous Mesoporous Mater. 62 (2003) 97.

synthesis of zeolite [Ga,Al]Beta by steam-assisted dry-gel conversion (SAC)

powder X-ray diffractograms and crystallinity as a function of the dry-gel conversion time

synthesis of zeolite [Ga,Al]Beta by steam-assisted dry-gel conversion (SAC)

²⁹Si MAS NMR spectra recorded after different SAC times

 $B_0 = 9.4$ T, $v_0 = 79.5$ MHz

synthesis of zeolite [Ga,Al]Beta by steam-assisted dry-gel conversion (SAC)

²⁹Si MAS NMR spectra recorded after different SAC times

 $B_0 = 9.4$ T, $v_0 = 79.5$ MHz

synthesis of zeolite [Ga,Al]Beta by steam-assisted dry-gel conversion (SAC)

⁷¹Ga MAS NMR spectra (spin I = 3/2) recorded after different SAC times

complete tetrahedral oxygen coordination of gallium atoms after a SAC time of 65 h

A. Arnold et al., Microporous Mesoporous Mater. 62 (2003) 97.

synthesis of zeolite [Ga,Al]Beta by steam-assisted dry-gel conversion (SAC)

⁷¹Ga MQMAS NMR spectroscopy (spin I = 3/2) of [Ga]Beta sample F (65 h)

synthesis of flame-derived silica-alumina with different aluminum contents

preparation of flame-made silicaalumina (SA) catalysts:

dissolving aluminum(III) acetylacetonate and tetraethoxysilane in a 1:1 (vol%) mixture of acetic acid and methanol

this solution was pumped through a capillary with 5 ml/min and nebulized with 5 l/min O_2

the spray was ignited by a methane/ oxygen flame (1.5/0.9 L/min) resulting in an approximately 6 cm long flame

particles (*ca.* 20 nm) were collected on a cooled Whatman GF6 filter

synthesis of flame-derived silica-alumina with different aluminum contents

formation of andalusite phases (Al₂SiO₅) with δ_{29Si} = -79.8 ppm (M. Mägi *et al.*, J. Phys. Chem. 88 (1984) 1518) and octahedrally (δ_{27AI} = 5 ppm) as well as pentacoordinated aluminum atoms (δ_{27AI} = 35 ppm)

J. Huang et al., Angew. Chem. Int. Ed. 49 (2010) 7776.

synthesis of flame-derived silica-alumina with different aluminum contents

Bo

II. Modification of catalysts

dealumination of zeolite H,Na-Y by steaming

dealumination of acidic zeolites by steaming

²⁹Si MAS NMR spectroscopy of zeolites H,Na-Y (left) and deH,Na-Y/31.1 (right)

J. Jiao et al., Microporous Mesoporous Mater. 90 (2006) 246.

dealumination of zeolite H,Na-Y by steaming

J. Jiao et al., Phys. Chem. Chem. Phys. 7 (2005) 3221.

dealumination of zeolite H,Na-Y by steaming

²⁷AI solid-state NMR spectroscopy (spin I = 5/2) of zeolite deH,Na-Y/81.5 (51.9 Al/u.c.)

²⁷Al spin-echo NMR

150

100

50

 δ_{27AI} / ppm

0

-50

-100

Signals	1	2	3	4
assignments	Al ^{IV} /H+ Al ^{IV} /Al ^{cat,x+}	Al ^{ıv} /Na+ cluster Al ^{ıv}	Al ^{v,x+} cat.	cluster Al ^{vı}
$\delta_{ m iso}$ / ppm	70±10	65±5	35±5	10±5
C _{QCC} / MHz	15.0±1.0	8.0±0.5	7.5±0.5	5.0±0.5
η_{Q}	0.3	0.8	0.7	0.7
/ in %	48 (27+21)	27 (7+20)	21	4
extra-framework Al cations (Al ^{V,x+}): Al ₂ O ₂ clusters:				

10.9 Al^{v,x+}/u.c.

12.5 Al^{cluster}/u.c.

in comparison with 24.5 Al^{ex}/u.c. calculated using results of ²⁹Si MAS NMR spectroscopy

J. Jiao et al., Phys. Chem. Chem. Phys. 7 (2005) 3221.

II. Modification of catalysts

VPO catalysts supported on mesoporous SBA-15 materials

preparation procedure of X.-K. Li et al., J. Catal. 238 (2006) 232:

- siliceous SBA-15 is added to isobutyl/benzyl alcohols (1 : 1) with V_2O_5 and H_3PO_4
- activation in a flow of 1.5 % *n*-butane, 17.5 % O_2 and balance N_2 (100 ml/min) at 673 K

VPO catalysts supported on mesoporous SBA-15 materials

VPO is bound at former silanol groups on the mesoporous surface of SBA-15

J. Frey et al., Solid State Nucl. Magn. Reson. 35 (2009) 130

VPO catalysts supported on mesoporous SBA-15 materials

⁵¹V MAS NMR spectroscopy (spin I = 7/2) of 60%VPO/SBA-15 after activation

Materials	δ _{iso} / ppm	∆ <i>σ</i> _{CSA} / ppm	$\eta_{ ext{CSA}}$	C _Q / MHz	η_{Q}
60%VPO/SBA-15	-735 -765	900 950	0.10 0.10	2.00 1.90	0.60 0.60
α _{II} -VOPO ₄ ¹⁾	-755	992	0.08	0.63	0.09
β-VOPO ₄ ¹⁾	-735	818	0.05	1.45	0.44

 ¹⁾ R. Siegel et al., Mag. Res. Chem. 42 (2004) 1022.
 O.B. Lapina et al., Prog. Nucl. Magn. Reson.
 Spetrosc. 53 (2008) 128.

VPO catalysts supported on mesoporous SBA-15 materials

³¹P MAS NMR spectroscopy of 60%VPO/SBA-15 before and after activation

P near V⁵⁺ in VOPO₄ phases, such as β -VOPO₄ (-13 ppm) and α_{\parallel} -VOPO₄ (-22 ppm)

J. Frey et al., Solid State Nucl. Magn. Reson. 35 (2009) 130

VPO catalysts supported on mesoporous SBA-15 materials

selective oxidation of *n*-butane to maleic anhydride at 678 K with sequential switching on (15 min) and off (40 min) of the gaseous oxygen

VPO catalysts supported on mesoporous SBA-15 materials

³¹P MAS NMR spectra of VPO/SBA-15/A to VPO/SBA-15/D

Catalysts	Samples	Contents of P/V ⁵⁺
VPO/bulk	Α	0.5 %
	В	0 %
	С	0.35 %
	D	0.4 %
VPO/SBA-15	Α	2.6 %
	В	0.3 %
	С	0.9 %
	D	1.3 %

nature of acid sites on zeolites

zeolite Y (FAU, faujasite): supercages connected via 12-ring windows (0.74 nm)

preparation of dehydrated catalyst samples

B₀

vacuum line for dehydration of catalyst samples in glass tubes at elevated temperatures (often 673 K) transfer of the dehydrated catalyst samples from glass tubes into MAS rotors inside a glove box (dry nitrogen)

modification of Brønsted acid sites in zeolites via steaming

undisturbed metal OH (AIOH) groups: -0.5 to 0.5 ppm

defect SiOH groups: 1.2 to 2.2 ppm

AIOH* groups at extra-framework AI clusters:

2.8 to 3.6 ppm

bridging OH groups in large cages and pores (SiOHAI_{Ic}): 3.6 to 4.3 ppm

bridging OH groups in small cages (SiOHAl_{sc}):

4.6 to 5.2 ppm

(hydrogen bonded SiOH and SiOHAI groups: 5.2 to 13 ppm)

preparation of Brønsted acid sites in zeolites via exchange with multivalent cations

exchange of zeolite Na-Y ($n_{Si}/n_{Al} = 2.7$) in 0.1 M Al(NO₃)₃ solution

J. Huang et al., J. Phys. Chem. C 112 (2008) 3811.

preparation of Brønsted acid sites in zeolites via exchange with multivalent cations

Brønsted acid sites in zeolites prepared via exchange with multivalent cations (Al³⁺)

determination of the concentration of OH groups by evaluation of the ¹H MAS NMR intensities

cation-exchange degree and dehydration temperature affect the number of Brønsted sites

characterization of the Brønsted acid strength via acetonitrile-induced low-field shift $\Delta \delta_{1H}$

Low-field shift $\Delta \delta_{1H}$	Adsorbent and type of OH group
1.2 ppm	AIOH in MIL-53(AI)
3.6 ppm	H,Na-X (Si/Al= 1.3)
3.8 ppm	42La,Na-X and 32Al,Na- X (Si/Al = 1.4)
4.9 ppm	75La,Na-X (S/AI = 1.4)
5.1 ppm	H,Na-Y (Si/Al = 2.7)
5.3 ppm	34AI,Na-Y and 63AI,Na- Y (Si/AI = 2.7)
5.7 ppm	42La,Na-Y and 75La,Na- Y (Si/Al = 2.7)
6.5 ppm	steamed deH,Na-Y/81.5 (Si/AI = 6)
6.7 ppm	H-MOR (Si/Al = 10)
7.0 ppm	dealuminated H,Na-Y (Si/AI = 18)
7.9 ppm	H-ZSM-5 (Si/Al = 26)

¹H MAS NMR

Y. Jiang et al., Solid State Nucl. Magn. Reson. 39 (2011) 116-141.

characterization of Brønsted and Lewis acid sites via ¹³C-2-acetone as probe molecule

¹³C CPMAS NMR

Y. Jiang et al., Solid State Nucl. Magn. Reson. 39 (2011) 116-141.

comparison of different acidity scales

J.F. Haw et al., Acc. Chem. Res. 29 (1996) 259.

H/D exchange kinetics as an acidity scale

in situ ¹H MAS NMR studies of H/D exchange in zeolite H,Na-Y loaded with ethylbenzene $(C_6D_5C_2H_5)$

J. Huang et al., Microporous Mesoporous Mater. 99 (2007) 86.

H/D exchange kinetics as an acidity scale

in situ ¹H MAS NMR spectroscopy of H/D exchange in zeolites H,Na-Y ($n_{Si}/n_{AI} = 2.7$), 75La,Na-Y ($n_{Si}/n_{AI} = 2.7$), and H-ZSM-5 ($n_{Si}/n_{AI} = 26$)

activation energies E_A of H/D exchange and low-field shifts $\Delta \delta_{1H}$ upon adsorption of CD₃CN:

catalyst	molecule	E _A / kJ mol ⁻¹	$\Delta \delta_{ m 1H}$ / ppm
H,Na-Y	benzene	76	
	ethylbenzer	ne 41	
	toluene	32	
	<i>p</i> -xylene	27	
H,Na-Y	benzene	76	5.1
La,Na-Y	benzene	67	5.7
H-ZSM-5	benzene	46	7.9

J. Huang et al., Microporous Mesoporous Mater. 99 (2007) 86.

H/D exchange kinetics as an acidity scale

in situ ¹H MAS NMR spectroscopy of H/D exchange in zeolites H,Na-Y ($n_{Si}/n_{AI} = 2.7$), 75La,Na-Y ($n_{Si}/n_{AI} = 2.7$), and H-ZSM-5 ($n_{Si}/n_{AI} = 26$)

activation energies E_A of H/D exchange and low-field shifts $\Delta \delta_{1H}$ upon adsorption of CD₃CN:

catalyst	molecule	E _A / kJ mol ⁻¹	$\Delta \delta_{ m 1H}$ / ppm
H,Na-Y	benzene	76	
	ethylbenzer	ne 41	
	toluene	32	
	<i>p</i> -xylene	27	
H,Na-Y	benzene	76	5.1
La,Na-Y	benzene	67	5.7
H-ZSM-5	benzene	46	7.9

preparation of catalyst samples for in situ MAS NMR studies under batch conditions

dehydration, loading, and sealing of the catalyst filled in an MAS NMR rotor inside a vacuum equipment dehydration and loading of the catalyst inside the glass insert (e.g. commercial Wilmad MAS NMR inserts for 4 mm and 7 mm rotors)

M. Hunger et al., in: B.M. Weckhuysen (ed.), *In situ Spectroscopy of Catalysts*, American Scientific Publishers, Stevenson Ranch, California, 2004, p. 177-218.

mechanisms of the ethylbenzene disproportionation

Streitwieser-Reif mechanism for the homogeneously catalyzed ethylbenzene disproportionation

suggested reaction mechanisms for the heterogeneously catalyzed reaction on zeolites:

- via diphenylethane
 intermediates in large pore zeolites
- dealkylation/realkylation with free ethene or alkoxy species in medium-pore zeolites

U. Weiß et al., Stud. Surf. Sci. Catal., Vol. 105, Elsevier, Amsterdam, 1997, p. 973.

mechanisms of the ethylbenzene disproportionation

¹³C MAS NMR investigation of the ethylbenzene conversion on large-pore zeolites H,Na-Y and 63AI,Na-Y

J. Huang et al., J. Am. Chem. Soc. 130 (2008) 12642.

mechanisms of the ethylbenzene disproportionation

structure of medium-pore zeolite ZSM-5:

H⁺_n[Al_nSi_{96-n}O₁₉₂] crossing intersections with interconnecting 10-ring channels [100] 0.51 nm x 0.55 nm [010] 0.53 nm x 0.56 nm

mechanism of the ethylbenzene disproportionation

¹³C MAS NMR investigation of the ethylbenzene conversion on medium-pore zeolite ZSM-5

continuous-flow (CF) and pulsed-flow (PF) MAS NMR spectroscopy

coupling of MAS NMR and UV/Vis spectroscopy by installation of a quartz fiber at the bottom of the MAS NMR stator

M. Hunger, Prog. Nucl. Magn. Reson. Spectrosc. 53 (2008) 105.

continuous-flow (CF) and pulsed-flow (PF) MAS NMR spectroscopy

7 mm Bruker MAS NMR probe equipped with a glass fiber (left) and UV/Vis light source and spectrometer of Avantes (bottom)

M. Hunger, Prog. Nucl. Magn. Reson. Spectrosc. 53 (2008) 105.

continuous-flow (CF) MAS NMR spectroscopy

M. Hunger, Prog. Nucl. Magn. Reson. Spectrosc. 53 (2008) 105.

pulsed-flow (PF) MAS NMR spectroscopy

pulsed-flow (PF) MAS NMR-UV/Vis spectroscopy

injection of liquid reactants into the spinning MAS NMR rotor via a micro-pulse pump

pulsed-flow experiments:

- study of the time dependence of the conversion of reactants
- study of the isotopic exchange of reactants at high temperatures with well-defined starting time

pump Mikro g/5 of Fa. ProMinent, Germany, for single pulses with volumes of 2 to 50 µl

mechanism of the methanol-to-olefin (MTO) conversion on acidic zeolites

via olefinic compounds (H. Schulz, M. Wei, Microporous Mesoporous Mater. 29 (1999) 205)

 $\begin{array}{rl} + \operatorname{CH}_3\operatorname{OH} & + \operatorname{CH}_3\operatorname{OH} & \operatorname{CH}_3 \\ \operatorname{CH}_2 = & \operatorname{CH}\text{-}\operatorname{CH}_3 \rightarrow & \operatorname{CH}_3\text{-}\operatorname{CH}\text{-}\operatorname{CH}\text{-}\operatorname{CH}_3 \rightarrow & \operatorname{CH}_3\text{-}\operatorname{C}\text{=}\operatorname{CH}\text{-}\operatorname{CH}_3 \\ & - \operatorname{H}_2\operatorname{O} & - \operatorname{H}_2\operatorname{O} \end{array}$

via polyalkylaromatics (J.F. Haw et al., Acc. Chem. Res. 36 (2003) 317)

mechanism of the methanol-to-olefin (MTO) conversion on acidic zeolites

H-ZSM-5: Structure type MFI $H_n^+[AI_nSi_{96-n}O_{192}]$ crossing intersections at interconnecting 10-ring channels [100] 0.51 nm x 0.55 nm [010] 0.53 nm x 0.56 nm

H-SAPO-34: Structure type CHA $H_n^+[AI_{18}P_{18-n}Si_nO_{72}]$ chabazite cages accessible by 8-ring windows perpendicular to [001] 0.38 nm x 0.38 nm

mechanism of the methanol-to-olefin (MTO) conversion on acidic zeolites

in situ CF ¹³C MAS NMR study of ZSM-5 ($W_{cat}/F_{me} = 25$ gh/mol)

mechanism of the methanol-to-olefin (MTO) conversion on acidic zeolites

in situ CF ¹³C MAS NMR study of SAPO34 ($W_{cat}/F_{me} = 25$ gh/mol)

yields / % T = 548 K18-25 30-32 dme $C_{2=}$ $C_{3=}$ $C_{4=}$ C_{4} 5 3 2 32 2 11 *T* = 573 K 40 dme $C_{2=}$ $C_{3=}$ $C_{4=}$ C_{4} ca. 133 12 23 13 7 18 T = 623 Kdme C₂₌ C₃₌ C₄₌ C₄ 132-134 2 31 47 9 10 18 T = 673 Kdme C₂₌ C₃₌ C₄₌ C₄ 129 0 37 49 8 10 134 T = 673 K18 purging with dry nitrogen 129 134 50 200 150 100 0 δ_{13C}/ppm

T < 573 K:

mixture of olefinic and aromatic compounds, such as: 2-methyl-2-butene (9.3-22.5, 118.8, 131.8 ppm) 2,4-hexadiene (19.5, 132.5 ppm) tetramethylbenzene (18.9, 131.1, 134.0 ppm)

T > 573 K:

domination of polymethylaromatics, such as: toluene (20.3, 128.5, 129.0 ppm)

trimethylbenzene (21.2, 127.4, 137.6 ppm) hexamethylbenzene (17.6, 132.1 ppm)

B

mechanism of the methanol-to-olefin (MTO) conversion on acidic zeolites

comparing study of organic deposits formed on H-SAPO-34 ($W_{cat}/F_{me} = 25$ gh/mol)

300 nm: monoenylic carbenium 345 nm: dienylic carbenium

400 nm: polycyclic coke 430 nm: trienylic carbenium

Y. Jiang et al., Microporous Mesoporous Mater. 105 (2007) 132.

side-chain H/D exchange of ethylbenzene on steamed zeolite deH,Na-Y/81.5

J. Huang et al., ChemPhysChem 9 (2008) 1107.

side-chain H/D exchange of ethylbenzene on steamed zeolite deH,Na-Y/81.5

C₆H₅CD₂CD₃ on dealuminated zeolite deH,Na-Y/81.5 (24.5 Al^{ex}/u.c, 10.9 SiOHAI /u.c)

activation energy of the regioselective H/D exchange (194 kJ/mol) indicates that a hydride transfer reaction is the rate determining step

side-chain H/D exchange of ethylbenzene on steamed zeolite deH,Na-Y/81.5

¹H MAS NMR:

UV/Vis:

- selective H/D exchange of methyl groups (1.2 ppm)

ions at BAS (400 nm), A

- styrene at BAS (300 nm), C

at LAS (450 nm), B

- activation energy of 194 kJ/mol indicates hydride transfer

BAS: Broensted acid site

LAS: Lewis acid site

Solid-state NMR of solid catalysts

co-workers:

Thomas Horvath Michael Seiler Andreas Buchholz **Udo Schenk** Mingcan Xu **Jiang Jiao** Jun Huang **Yijiao Jiang** Jörg Frey **Arne Bressel Reddy Marthala Bejoy Thomas** Wei Wang Yean Sang Ooi **Christian Lieder Harald Henning** Weili Dai **Zichun Wang** u.a.

financial support:

Deutsche Forschungsgemeinschaft

Fonds der Chemischen Industrie

Volkswagen Foundation

DECHEMA e.V.

Alexander von Humboldt-Foundation

u.a.

B

Thanks to

²⁷Al spin-echo NMR studies of reference materials

 $B_0 = 9.4 \text{ T}$ cluster Al^{VI} cluster Al^{IV} 200 400 0 -200 -400 δ_{27AI} / ppm $B_0 = 17.6 \text{ T}$ cluster Al^{IV} cluster AI^{VI} 200 100 0 -100

dehydrated γ -Al₂O₃

spectroscopic parameters of cluster Al^{IV}:

- QCC = 8.5 MHz,
$$\eta$$
 = 0.8

-
$$\delta_{iso}$$
 = 68±5 ppm

- *I*_{rel} = 60 %

 spectroscopic parameters of cluster Al^{VI}:
 - QCC = 5.5 MHz. n = 0.7

$$\delta_{iso} = 12\pm 5 \text{ ppm}$$

 $\delta_{
m 27Al}$ / ppm

J. Jiao et al., Phys. Chem. Chem. Phys. 7 (2005) 3221.