

Quantitative Bestimmung von Aluminiumspezies in hydrothermal behandelten Zeolithen

Michael Hunger

Institut für Technische Chemie

Universität Stuttgart

- Einleitung
- Methoden
- Experimentelles
- Quantitative Charakterisierung
- Interpretation der Ergebnisse
- Zusammenfassung

Vorschläge zum Mechanismus der Dealuminierung

1. Zweistufiger Mechanismus nach Kerr

G.T. Kerr, in: W.M. Meier, J.B. Uytterhoeven (Hrsg.), Molecular Sieves, Advances in Chemistry Series, Band 121, American Chemical Society, Washington, 1974, S. 219-229.

2. Modell für die Dehydroxylierung von Zeolith H-Y nach Kühl

G.H. Kühl, J. Phys. Chem. Solids 38 (1977) 1259-1269.

Methoden zur quantitativen Charakterisierung von Aluminium

- Atomemissionsspektroskopie mit induktiv gekoppeltem Plasma (AES/ICP), keine Unterscheidung zwischen Gerüst- und Extragerüstaluminiumatomen möglich
- Röntgen-Pulverdiffraktometrie (**XRD**): Berechnung der Gerüstaluminiumgehalte über experimentell ermittelte Gitterkonstanten
- Infrarotspektroskopie (**FTIR**): Semiquantitative Charakterisierung von Brønsted- und Lewis-Säurezentren mit Pyridin als Sondenmolekül
- ²⁹Si-MAS-NMR-Spektroskopie: Quantitative Bestimmung von Gerüst- n_{Si}/n_{Al} -Verhältnissen aus den relativen Verhältnissen der Si(*n*Al)-Signale mit *n* = 0 bis 4 (Si(OSi)_{4-n}(OAl)_n-Einheiten)

- ²⁷Al-MAS-NMR-Spektroskopie:
 - ,,unsichtbares Aluminium'': bei dealuminierten Y-Zeolithen ist z.T. nur ca. 70 % des Gesamtaluminiums detektierbar ($B_0 = 9,4$ T)
 - widersprüchliche Signalinterpretationen:
 - Gerüst- oder Extragerüstaluminiumspezies
 - unterschiedliche Koordinationszahlen
 - Einfluss von Quadrupolwechselwirkungen: Verteilung der Gesamtintensität auf Zentralübergang und Satellitenübergänge sowie im Zentralübergang auf Zentrallinie und Rotationsseitenbanden
 - reversibler Koordinationswechsel
- ¹H-MAS-NMR-Spektroskopie: quantitative Bestimmung der SiOH-, AlOH- und SiOHAl-Gruppen

1. Probenpräparation

- Dealuminierung von Zeolith H-Y (n_{Si}/n_{Al} = 2,7) durch hydrothermale Behandlung in einem mit Wasserdampf beladenen Stickstoffstrom (-√200 cm³/min oder 100 cm³/min (S)) bei T=813 K
- Benennung der Proben nach Wasserbadtemperatur in Grad Celsius, z.B. bei $T_{\text{Wasserbad}} = 98^{\circ}$ C dealuminierter Y-Zeolith: DAY98
- Auswaschen der dealuminierten Zeolithe mit verdünnter Salzsäure: c(HCl) = 0,16 mol/l (DAY98W8), 0,22 mol/l (DAY98W9) und 0,28 mol/l (DAY98W10), bei 353 K für 4 h
- Beladung mit NH_3 (p = 50 hPa) bei 298 K für 1,5 h: z.B. DAY98N

2. Charakterisierung

- **AES/ICP**: Bestimmung der Gesamtaluminiumgehalte
- **FTIR**: quantitative Auswertung der Banden bei 1455 cm⁻¹ (Lewis-Säurezentren) und 1545 cm⁻¹ (Brønsted-Säurezentren), Extinktionskoeffizienten nach Datka et al.

J. Datka, A.M. Turek, J.M. Jehng, I.E. Wachs, J. Catal. 135 (1992) 186-199.

- XRD: Bestimmung der Gitterkonstante von hydratisierten Zeolithen, Verwendung eines internen Siliciumstandards, Berücksichtigung der Nullpunktsverschiebung der 2Θ-Achse
- ²⁹Si-MAS-NMR: MSL-400 NMR-Spektrometer, hydratisierte Proben, Bestimmung der Gerüst- n_{Si}/n_{Al} -Verhältnisse: $n_{Si}/n_{Al} = \sum_{n=0}^{4} I_{Si(nAl)} / \sum_{n=0}^{4} \frac{n}{4} \cdot I_{Si(nAl)}$
- **2D-²⁷Al-3QMAS-NMR**: Avance 500 WB NMR-Spektrometer (Firma Bruker BioSpin, Rheinstetten), hydratisierte Proben, Bestimmung der Quadrupolparameter und Zuordnung von Aluminiumkoordinationen
- **1D-²⁷Al-MAS-NMR**: MSL-400 NMR-Spektrometer, hydratisierte Proben, quantitative Charakterisierung der Aluminiumspezies
- ¹H-MAS-NMR-Spektroskopie: MSL-400 NMR-Spektrometer, dehydratisierte Proben, quantitative Bestimmung der SiOH-, AlOH- und SiOHAl-Gruppen durch Vergleich mit einem externen Standard

H. Fichtner-Schmittler, U. Lohse, H. Miessner, H.-E. Maneck, Z. Phys. Chem. 271 (1990) 69-79.

Substanz	XRD	²⁹ Si-NMR
	N _{GAl} / EZ	N _{GAl} / EZ
NH ₄ ,Na-Y	52,3	51,8
DAY40	42,0	49,4
DAY80	37,5	42,9
DAY90	31,6	33,9
DAY98	29,6	31,0
DAY40N	-	48,2
DAY80N	39,4	41,9
DAY90N	-	-
DAY98N	32,5	33,8

bei schwacher Dealuminierung unerwartet starke Abnahme der mittels XRD bestimmten Anzahl der Gerüstaluminiumatome

Einfluss hochgeladener Extragerüstaluminiumkationen auf XRD-Daten

kein Einfluss der NH_3 -Beladung auf N_{GA1} -Werte

2 Signale von tetraedrisch koordiniertem Aluminium in der F1-Dimension aufgelöst

> Signal Al^{IVa}: $\delta_{iso} = 61,6 \text{ ppm}$ $v_Q = 360 \text{ kHz}$

> Signal Al^{IVb}: $\delta_{iso} = 61,4 \text{ ppm}$ $v_Q = 1005 \text{ kHz}$

Signal Al^{VI}: $\delta_{iso} = 3,3 \text{ ppm}$ $v_Q = 315 \text{ kHz}$

zusätzliches Signal von fünffach koordinierten Aluminiumspezies (Al^V)

Signal Al^{IVa}: $\delta_{iso} = 61,9 \text{ ppm}$ $v_0 = 330 \text{ kHz}$

Signal Al^{IVb}: $\delta_{iso} = 60,1 \text{ ppm}$ $v_Q = 1005 \text{ kHz}$

Signal Al^v: $\delta_{iso} = 31,4 \text{ ppm}$ $v_Q = 450 \text{ kHz}$

Signal Al^{VI}: $\delta_{iso} = 7,3 \text{ ppm}$ $v_Q = 285 \text{ kHz}$

 $[\]delta_{
m F2}$ / ppm

1D-27Al-MAS-NMR-Spektroskopie II

DAY98 :

Al-Signal	Intensitätsanteil an Zentralbande	Korrektur -faktor	korrigierte Intensität	$N_{ m Al}$ / EZ
Al _{IVa}	0,411	0,99	0,391	20,3
Al _{IVb}	0,377	0,87	0,408	21,2
Al _{VI}	0,212	1,00	0,201	10,5

D. Massiot, C. Bessada, J.P. Coutures, F. Taulelle, J. Magn. Reson. 90 (1990) 231-242.

Substanz	N _{Al,IVa} / EZ	N _{Al,IVb} / EZ	N _{Al,VI} / EZ
NH ₄ ,Na-Y	52,0	-	-
DAY40	41,4	-	10,6
DAY80	32,2	10,2	<mark>9,</mark> 6
DAY90	25,6	15,8	10,6
DAY98	20,3	21,2	10,5
DAY40N	47,6	2,2	2,2
DAY80N	42,7	13,3	<mark>2,</mark> 8
DAY90N	36,1	20,1	3,2
DAY98N	32,0	24,7	2,9

- Berücksichtigung der mittels 2D-²⁷Al-3QMAS-NMR-Spektroskopie
 bestimmten Quadrupolparameter bei Simulation der 1D-²⁷Al-MAS-NMR-Spektren
- Abnahme der Al^{IVa}-Signalintensität und Zunahme der Intensität des Al^{IVb}-Signals für stärker dealuminierte Y-Zeolithe
- Reversibler Koordinationswechsel bei Beladung der Zeolithe mit Ammoniak: Umlagerung Al^{VI}→Al^{IV}

Substanz	. V _{N2} / cm ³ min ⁻¹	n _{bs} / EZ	n _{ls} / EZ	$\Delta n_{\rm LS} / \Delta n_{\rm BS}$
H-Y	-	28,4	1,6	-
DAY40	200	5,6	11,5	0,43
DAY60	200	11,1	11,4	0,57
DAY98	200	13,0	13,2	0,75
DAY40S	100	10,1	13,5	0,65
DAY98S	100	11,2	7,8	0,36

- Abnahme der Anzahl an Brønsted-Säurezentren bei gleichzeitiger Zunahme an Lewis-Säurezentren in den großen Hohlräumen
- Abschätzung des Kondensationsgrades der Extragerüstaluminiumspezies über das Verhältnis $\Delta n_{\rm LS}/\Delta n_{\rm BS}$
- starke Abhängigkeit des Kondensationsgrades der Extragerüstaluminiumspezies von den experimentellen Bedingungen (V_{N_2})

Substanz	N _{SiOHAl} / EZ	N _{AlOH} / EZ	N _{SiOH} / EZ
H-Y	45,8	-	0,9
DAY40	5,6	5,4	1,8
DAY80	14,4	12,1	1,5
DAY98	18,5	12,0	1,4
DAY80N	22, <mark>8</mark>	11,4	1,1
DAY40S	19,8	11,1	1,1
DAY98S	19,9	12,0	3,0

- starker Einfluss des Volumenstromes des Trägergases auf die Anzahl der Brücken-OH-Gruppen (SiOHAl)
- Zunahme der Anzahl der Brücken-OH-Gruppen bei vorheriger Beladung der dealuminierten Zeolithe mit Ammoniak

Substand	²⁹ Si-NMR		¹ H-NMR	(N _{GAI} - N _{SiOHAI}	
Substanz	$N_{ m GAl}$	$N_{ m EGAl}$	N _{SiOHAl}	- $N_{ m Na}$) / $N_{ m EGAl}$	
DAY40	49,4	2,7	5,6	14,81	
DAY60	47,0	5,1	9,5	6,61	
DAY70	45,6	6,5	13,0	4,43	
DAY80	42,9	9,2	14,4	2,68	
DAY90	33,9	18,2	18,3	0,65	
DAY94	31,7	20,4	19,3	0,42	
DAY98	31,0	21,1	18,5	0,41	

- Abschätzung der Ladungen der Extragerüstaluminiumkationen über den Term $(N_{\text{GAI}}-N_{\text{SiOHAI}}-N_{\text{Na}}) / N_{\text{EGAI}}$ mit $N_{\text{Na}} = 3.8 / \text{EZ}$
- Interpretation der teils sehr hohen Werte entsprechend dem Dehydroxylierungsmodell von Kühl

G.H. Kühl, J. Phys. Chem. Solids 38 (1977) 1259-1269.

Substand	XRD	²⁹ Si-NMR	²⁷ Al-NMR
Substanz	N _{GAl} / EZ	N _{GAl} / EZ	N _{GAl} / EZ
NH ₄ ,Na-Y	52,3	51,8	52,0
DAY40	42,0	49,4	41,4
DAY80	37,5	42,9	32,2
DAY90	31,6	33,9	25,6
DAY98	29,6	31,0	20,3
DAY40N	-	48,2	47,6
DAY80N	39,4	41,9	42,7
DAY90N	-	-	36,1
DAY98N	32,5	33,8	32,0

- Übereinstimmung der ²⁷Alund ²⁹Si-MAS-NMR-Daten nach reversiblen Koordinationswechsels der nur partiell hydrolysierten Gerüstaluminiumatome
- Übereinstimmung der XRDund NMR-Daten, wenn Einfluss hochgeladener Extragerüstaluminiumkationen ausgeschlossen werden kann

- **AES/ICP** und **EDX**: Bestimmung des Gesamtaluminiumgehalts und der Aluminiumverteilung
- **XRD**: quantitative Bestimmung des Gerüstaluminiumgehalts aus der Gitterkonstante, signifikante Abweichungen bei hochgeladenen Extragerüstkationen
- **FTIR**: Aussagen über Zahl der zugänglichen Brønsted- und Lewis-Säurezentren sowie dem Kondensationsgrad des Extragerüstaluminiumspezies
- ²⁹Si-MAS-NMR-Spektroskopie: quantitative Bestimmung von Gerüst- n_{Si}/n_{Al} -Verhältnissen aus den relativen Intensitäten der Si(nAl)-Signale
- ²⁷Al-MAS-NMR-Spektroskopie: quantitative Bestimmung der verschiedenen Aluminiumspezies durch Spektrensimulation, Intensitätskorrektur für Zentralübergang und Berücksichtigung des Phänomens des reversiblen Koordinationswechsels
- ¹H-MAS-NMR-Spektroskopie: quantitative Bestimmung der SiOH-, AlOHund SiOHAl-Gruppen, Abschätzung der Ladungsbilanz der Zeolithgerüstes und der Extragerüstaluminiumkationen

- Stefan Altwasser, Diplomarbeit
- Mingcan Xu, Wei Wang, Präparation von Proben und NMR-Messungen
- Stefan Steuernagel, BRUKER BioSpin, MQMAS-NMR-Messungen
- Mitarbeiter des Instituts für Technische Chemie der Universität Stuttgart
- Max-Buchner-Forschungsstiftung für finanzielle Unterstützung