

Effect of Noble Metal Loading and Pore Size on the Catalytic Properties of Solids

> Michael Hunger Institute of Chemical Technology University of Stuttgart

> > Eduard-Zintl-Colloquium TU Darmstadt, July 12, 2017

Effect of noble metal loading and pore size on the catalytic properties of solids

Examples for applications of noble metal containing solid catalysts

- hydrocracking of alkanes [1]

- ring-opening of naphthenes to open alkanes by hydrogenolysis [2]

- [1] J. Scherzer, A.J. Gruia, Hydrocracking Science and Technology, Marcel Dekker, New York, USA, 1996.
- [2] S. Rabl et al., Ring Opening of Cis-decalin on Bifunctional Ir/- and Pt/La-X Zeolite Catalysts, Appl. Catal. A: General 400 (2011) 131-141.

Effect of noble metal loading and pore size on the catalytic properties of solids

Catalysts under study:

- parent and dealuminated zeolite Y, mesoporous SBA-15, amorphous silica

- loading of $RhCl_3 \cdot x H_2O$, $[Ir(NH_3)_5Cl]Cl_2$, $[Pd(NH_3)_4]Cl_2$, and $[Pt(NH_3)_4]Cl_2$

Effect of noble metal loading and pore size on the catalytic properties of solids

Analytical methods

- NMR spectroscopy of surface sites using probe molecules
- hydrogenation of acrylonitrile studied by in situ ¹H MAS NMR spectroscopy

- dehydrogenation of propane in a standard fixed-bed reactor with on-line GC analysis under continuous flow conditions
- hydrogenation of propene with para-hydrogen studied by *in situ* ¹H MAS NMR spectroscopy under continuous flow conditions

Sample treatment before solid-state NMR studies

- evacuation at vacuum line after reduction and subsequent sealing in glass tubes
- loading of ammonia, acetonitrile, and acrylonitrile at vacuum line and subsequent evacuation at 453 K (ammonia) or 295 K (others)
- addition of solid trimethylphosphine and heating at 433 K for 2 h
- transfer of pretreated samples into MAS rotors inside glovebox purged with N_2

Preparation of dehydrated catalyst samples for MAS NMR studies

B₀

vacuum line for dehydration of catalyst samples in glass tubes at elevated temperatures (often 673 K) transfer of the dehydrated catalyst samples from glass tubes into MAS rotors inside a glove box (dry nitrogen)

Preparation of activated catalysts loaded with probe molecules or reactants

M. Hunger et al., in: B.M. Weckhuysen (ed.), *In situ Spectroscopy of Catalysts*, American Scientific Publishers, Stevenson Ranch, California, 2004, p. 177-218.

Preparation of activated catalysts loaded with probe molecules or reactants

Wilmad insert for 7mm Bruker rotors

selfmade equipment for rotor sealing

Investigation of surface sites on bifunctional noble metal containing zeolites

Generation of catalytically active surface sites on noble metal containing zeolites

zeolites H,Na-Y (n_{Si}/n_{AI} = 2.7) loaded with calculated amounts of Rh, Ir, Pd, and Pt

temperature-programmed desorption of ammonia (TPD-A) in flowing helium [1]

adapted ¹H MAS NMR measurement:

- loading of dehydrated (623 K, vacuum) catalysts with ammonia (100 mbar, 10 min)
- evacuation of physisorbed ammonia at 453 for 2 h

U. Obenaus et al., J. Phys. Chem. C 119 (2015) 15254-15262.

noble metal (NM) loading, noble metal dispersion (*D*), density of acidic OH groups (acOH), and number of acidic OH groups per noble metal atom (acOH/NM)

Samples	NM	NM	D Density		acOH/NM
	loading	loading ^a		of acOH	
	/ wt.%	/ u.c. ⁻¹	/%	/ u.c. ⁻¹	
0.4Rh/H,Na-Y	0.36	0.44	54	0.15	0.3
2.3Rh/H,Na-Y	2.32	2.94	80	3.14	1.1
0.8lr/H,Na-Y	0.83	0.56	121	0.27	0.5
3.1lr/H,Na-Y	3.12	2.13	129	1.88	0.9
4.7lr/H,Na-Y	4.68	3.26	130	4.24	1.3
0.4Pd/H,Na-Y	0.38	0.46	19	0.12	0.3
1.9Pd/H,Na-Y	2.00	2.45	48	1.76	0.7
2.8Pd/H,Na-Y	2.78	3.43	43	2.10	0.6
0.8Pt/H,Na-Y	0.82	0.54	73	0.20	0.4
4.5Pt/H,Na-Y	4.48	3.07	92	2.54	0.8

ratios of the numbers of acidic Si(OH)AI groups (acOH) and noble metal atoms (NM) for noble metal containing zeolites Y

U. Obenaus et al., J. Phys. Chem. C 119 (2015) 15254-15262.

¹H MAS NMR studies of the acid strength of Si(OH)Al groups in noble metal containing zeolites Y

evaluation of the CD₃CN-induced low-field shift $\Delta \delta_{1H}$ of ¹H MAS NMR signals

 E_a ZO-H···A ZO-···H+A

reaction coordinate

low-field shift $\Delta \delta_{1H}$ of the ¹H MAS NMR signal of SiOHAI groups upon adsorption of acetonitrile (CD₃CN):

sample	<u>∆δ_{1Η}</u> / ppm	
AIOH	1.2	
SiOH	3.0	
Si(OH)AI:		
H,Na-X $(n_{Si}/n_{Al} = 1.3)$	3.6	
H,Na-Y $(n_{\rm Si}/n_{\rm Al} = 2.7)$	5.1	
AI,Na-Y $(n_{\rm Si}/n_{\rm AI} = 2.7)$	5.3	
H,Na-Y $(n_{Si}/n_{Al} = 5)$	6.4	
H-MOR $(n_{\rm Si}/n_{\rm Al} = 10)$	6.7	
H,Na-Y $(n_{\rm Si}/n_{\rm Al} = 18)$	7.0	
H-ZSM-5 $(n_{\rm Si}/n_{\rm AI} = 19)$	7.2	
H-ZSM-5 $(n_{Si}/n_{AI} = 26)$	7.9	

Y. Jiang, J. Huang, W. Dai, M. Hunger, Solid State Nucl. Magn. Reson. 39 (2011) 116-141.

¹H MAS NMR studies of the acid strength of Si(OH)Al groups in noble metal containing zeolites Y

evaluation of the CD₃CN-induced low-field shift $\Delta \delta_{1H}$ of ¹H MAS NMR signals for comparison: 0.2H,Na-Y has $\Delta \delta_{1H} = 5.2$ ppm

U. Obenaus et al., J. Phys. Chem. C 119 (2015) 15254-15262.

³¹P MAS NMR studies of the surface site location in noble metal containing zeolites Y

interaction of trimethylphosphine oxide (TMPO) with Si(OH)AI groups in large (I.c.) and small cages (s.c.)

U. Obenaus et al., J. Phys. Chem. C 119 (2015) 15254-15262.

Intrinsic hydrogenation activity investigated by in situ MAS NMR spectroscopy

Experimental technique of in situ MAS NMR spectroscopy under flow conditions

modified 4 mm Bruker MAS NMR probe equipped with an injection system

tools for the preparation of the catalyst bed (hollow cylinder) inside the MAS NMR rotor

hydrogenation of pre-adsorbed acrylonitrile with H_2 at T = 298 K

Bruker Avance III 400WB spectrometer, modified 7 mm MAS NMR probe, v_{rot} ca. 2 kHz, 1 FID per spectrum, D1 = 6 s H. Henning et al., Micropor. Mesopor. Mater. 164 (2012) 104.

H. Henning et al., Micropor. Mesopor. Mater. 164 (2012) 104.

catalyst	n _{Si} /n _{Al}	noble metal content / wt %	disper- sion /%	determination of the velocity constants <i>k</i> of the intrinsic hydrogenation of acrylonitrile on Pt containing solid catalysts
0.9Pt/silica	~	0.85	83	5
0.9Pt/SBA-15	199	0.78	68	4 -
0.9Pt/DeA-Y	93	0.96	72	
0.9Pt/H,Na-Y	2.7	0.82	73	
0.3Rh/silica	∞	0.29	59	
0.3Rh/SBA-15	209	0.33	60	
0.4Rh/DeA-Y	112	0.37	68	1 - 0.9Pt/silica
0.4Rh/H,Na-Y	2.7	0.42	63	▼ 0.9Pt/SBA-15 ■ 0.9Pt/DeA-Y ● 0.9Dt/U No.Y
0.8lr/H,Na-Y	2.7	0.84	121	0 50 100 150 200 250 300
0.4Pd/H,Na-Y	3.0	0.40	43	reaction time / s

Bruker Avance III 400WB spectrometer, modified 4 mm MAS NMR probe, v_{rot} ca. 4 kHz, 1 FID per spectrum, D1 = 6 s

U. Obenaus et al., J. Phys. Chem. C 120 (2016) 2284-2291.

velocity constants *k* and reaction rates *r* of the intrinsic hydrogenation of acrylonitrile on noble metal containing solid catalysts

catalyst	acrylonitrile	k	r	
	/ mmol	/ s ⁻¹	/ mmol s ⁻¹	
0.9Pt/silica	0.023	$(3.3 \pm 0.3) \times 10^{-2}$	(7.6 ± 1.1) × 10 ⁻⁴	
0.9Pt/SBA-15	0.018	(1.8 ± 0.2) × 10 ⁻²	(3.2 ± 0.5) × 10 ⁻⁴	
0.9Pt/DeA-Y	0.018	$(3.8 \pm 0.4) \times 10^{-2}$	(6.8 ± 0.9) × 10 ⁻⁴	
0.9Pt/H,Na-Y	0.021	(1.1 ± 0.1) × 10 ⁻²	(2.3 ± 0.3) × 10 ⁻⁴	
0.4Rh/H,Na-Y	0.020	$(3.4 \pm 0.3) \times 10^{-2}$	(6.8 ± 1.0) × 10 ⁻⁴	
0.8lr/H,Na-Y	0.017	(6.7 ± 0.7) × 10 ⁻⁴	(0.11 ± 0.02) × 10 ⁻⁴	
0.4Pd/H,Na-Y	0.027	1.1 ± 0.3	(270 ± 50) × 10 ⁻⁴	

- same kind and numbers of noble metals on different porous support materials lead to similar hydrogenation rates (same order of magnitude)
- sequence of *r* values catalysts (H,Na-Y) loaded with different noble metals:

0.4Pd/H,Na-Y > 0.4Rh/H,Na-Y > 0.9Pt/H,Na-Y > 0.8Ir/H,Na-Y

U. Obenaus et al., J. Phys. Chem. C 120 (2016) 2284-2291. U. Obenaus et al., J. Phys. Chem. C 121 (2017) 9953-9962.

Comparison of the hydrogenation and dehydrogenation activities of noble metal containing zeolites Y

Comparison of the hydrogenation and dehydrogenation rates of noble metal containing zeolites Y

dehydrogenation of propane in a standard fixed-bed reactor at 828 K, under atmospheric pressure, propane/N₂ mixture of 2:1, WHSV_{C3} = 3 h⁻¹ and after TOS = 35 min

catalyst	Х_{С3}	S _{C3=}	Y _{C3=}	TOF
	/%	/%	/%	/ s ⁻¹
0.4Pd/H,NaY	2	49	1	1.03
0.4Rh/H,NaY	2	73	1	1.13
0.8Pt/H,NaY	18	69	12	8.39
0.8lr/H,NaY	6	63	4	2.68
2.8Pd/H,NaY	3	62	2	0.20
2.3Rh/H,NaY	3	80	2	0.20
4.5Pt/H,NaY	33	51	17	2.71
4.7lr/H,NaY	8	57	5	0.67

- sequence of *r* values (hydrogenation of acrylonitrile):

0.4Pd/H,Na-Y > 0.4Rh/H,Na-Y > 0.9Pt/H,Na-Y > 0.8Ir/H,Na-Y

- sequence of turn-over-frequencies *TOF* (dehydrogenation of propane):

0.4Pd/H,Na-Y < 0.4Rh/H,Na-Y < 0.8Ir/H,Na-Y < 0.8Pt/H,Na-Y

2.8Pd/H,Na-Y = 2.3Rh/H,Na-Y < 4.7Ir/H,Na-Y < 4.5 Pt/H,Na-Y

U. Obenaus et al., J. Phys. Chem. C 120 (2016) 2284-2291.

Comparison of the hydrogenation and dehydrogenation rates of noble metal containing zeolites Y

- high-temperature peaks $T_{\rm HT}$ of H₂ desorption (TPD):

Pd/H,Na-Y (T_{HT} = 723 K) > Rh/H,Na-Y (T_{HT} = 713 K) > Ir/H,Na-Y (T_{HT} = 663 K)

- *T*_{HT} = 738 K and 848 K for Pt/H,Na-Y:

may be explained by strong H chemisorption inside Pt clusters

Comparison of the hydrogenation and dehydrogenation rates of noble metal containing zeolites Y

- high-temperature peaks T_{HT} of H₂ desorption (TPD): Pd/H,Na-Y (T_{HT} = 723 K) > Rh/H,Na-Y (T_{HT} = 713 K) > Ir/H,Na-Y (T_{HT} = 663 K)
- T_{HT} = 738 K and 848 K for Pt/H,Na-Y:

strong H chemisorption inside Pt clusters may enhance dehydrogenation

U. Obenaus et al., J. Phys. Chem. C 120 (2016) 2284-2291.

Parahydrogen induced polarization in porous solids studied by *in situ* MAS NMR spectroscopy

PASADENA: Parahydrogen And Synthesis Allow Dramatically Enhanced Nuclear Alignment ($p-H_2$ incorporation inside a strong B_0 field)

p-H₂: hydrogenation of propene with para-enriched H₂ $CH_3 - CH = CH_2 \xrightarrow{+ p - H_2} CH_3 - CH_{(A)} - CH_2H_{(X)}$ thermally polarized AX spin system with spin states α , β ββ - pairwise incorporation of the two H atoms of p-H₂ causes large αβ βα non-equilibrium spin polarization chemical shift αα enhancement - ¹H MAS NMR signals due to a pairwise hyperpolarization due to p-H₂ up to incorporation of p-H₂ into reactants BB have typical anti-phases (bottom) αβ βα αα

J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spec. 31 (1997) 293.

in situ ¹H MAS NMR studies of PHIP:

- modified 4 mm Bruker MAS NMR probe
- at $v_0 = 400.13$ MHz, v_{rot} ca. 4 kHz, $\pi/4$ pulses, *NS* = 96, D1 = 0.1 s
- para : ortho ratio of 1 : 1 (p-H₂)
 obtained by contact with
 FeO(OH) (Sigma-Aldrich) placed
 in liquid nitrogen
- propene and p-H₂ flows of
 40 and 30 ml/min, respectively

equipment utilized for *in situ* ¹H MAS NMR studies of PHIP:

p-H₂ converter and gas mixing system

flow MAS NMR probe

hydrogenation catalysts

catalyst	n _{Si} /n _{Al}	noble	BET	total	pore
		metal	surface	pore	size
		content	/ m² g-1	volume	/ nm
		/ wt %		/ cm ³ g ⁻¹	
0.9Pt/silica	∞	0.85	277	0.31	4.55 ^a
0.9Pt/SBA-15	199	0.78	420	0.36	3.43 ^a
0.9Pt/DeA-Y	93	0.96	721	0.42	0.74 ^b
0.9Pt/H,Na-Y	2.7	0.82	937	0.47	0.74 ^b
0.3Rh/silica	~	0.29	282	0.27	3.77 ^a
0.3Rh/SBA-15	209	0.33	690	0.72	4.07 ^a
0.4Rh/DeA-Y	112	0.37	749	0.39	0.74 ^b
0.4Rh/H,Na-Y	2.7	0.42	1012	0.54	0.74 ^b
0.8lr/H,Na-Y	2.7	0.84	1050	0.52	0.74 ^b
0.4Pd/H,Na-Y	3.0	0.40	913	0.45	0.74 ^b

ca. 40 mg catalyst filling factor ca. 80 %

^{a)} average pore size determined by N_2 adsorption

^{b)} crystallographic pore size

- anti-phase signals indicate pairwise incorporation of p-H₂ into propene

- signal narrowing by MAS hints at dipolar interactions of reactants inside pores

in situ ¹H MAS NMR investigation of PHIP on zeolite H,Na-Y

moderate hydrogenation activities (acrylonitrile) are suitable for PHIP formation, while a too high activity (0.4Pd/H,Na-Y) suppresses the pairwise p-H₂ incorporation

in situ ¹H MAS NMR investigation of PHIP on Pt containing porous solids

 intensities of the anti-phase signals depend slightly on pore size and strongly on presence of framework AI and Na⁺ cations

possible spin interactions of hyperpolarized propane in zeolite Y

0.9Pt/DeA-Y ($n_{\rm Si}/n_{\rm AI} = 93$)

0.9Pt/H,Na-Y ($n_{\rm Si}/n_{\rm Al} = 2.7$)

2D nutation analysis of chemically induced dynamic nuclear polarization in Ref. [3]

- [1] D. Canet et al., Concepts in Magnetic Resonance A, 28 (2006) 321-330.
- [2] G.A.H. Tijink et al., J. Am. Chem. Soc. 109 (1987) 7301-7303.
- [3] H.-M. Vieth and co-workers, Z. Phys. Chem. 217 (2003) 1641-1659 and 227 (2013) 929-953. 36

in situ 2D ¹H nutation MAS NMR on 0.9Pt/silica

in situ 2D ¹H nutation MAS NMR on 0.9Pt/DeA-Y (left) and 0.9Pt/H,Na-Y (right)

U. Obenaus et al., in preparation.

Effect of noble metal loading and pore size on the hydrogenation behaviour of solid catalysts

Summary

- reduction of noble metals (NM) in H_2 at 623 K leads to formation 0.3 to 1.3 acOH/NM, which are characterized by a medium acid strength for Pd- and Pt-loaded zeolites Y
- intrinsic hydrogenation rates r of noble metal containing zeolites Y:
 Pd/H,Na-Y > Rh/H,Na-Y > Pt/H,Na-Y > Ir/H,Na-Y
- dehydrogenation rates (*TOF*) have opposite sequence:
 Pd/H,Na-Y < Rh/H,Na-Y < Ir/H,Na-Y << Pt/H,Na-Y
- H₂-TPD indicates a positive effect of a hydrogen reservoit on the noble metals for the hydrogenation (T_{HT} = 738 K and 848 K for Pt/H,Na-Y, H sink in Pt clusters?):
 Pd/H,Na-Y (T_{HT} = 723 K) > Rh/H,Na-Y (T_{HT} = 713 K) > Ir/H,Na-Y (T_{HT} = 663 K)
- Rh and Pt containing porous solids are suitable catalysts for the formation of parahydrogen induced polarization (PHIP):

i.e. pairswise incorporation of p-H₂, in contrast to Pd containing catalysts

- weak effect of the pore size (0.7 to 4.5 nm) on the formation of PHIP, but strong decrease of PHIP in the presence of potential relaxation centers

co-workers:

Utz Obenaus Harald Henning Bejoy Thomas Jörg Frey Swen Lang Weili Dai Zichun Wang Mingcan Xu Jiang Jiao Jun Huang Yijiao Jiang Arne Bressel Reddy Marthala

financial support:

Deutsche Forschungs-Gemeinschaft (HU533/13-1)

National Natural Science Foundation of China

Volkswagen-Stiftung

DECHEMA e.V.

Alexander von Humboldt-Stiftung

B

Thanks to

in situ ¹H MAS NMR investigation of PHIP on Rh-containing porous solids

 intensities of the anti-phase signals depend slightly on pore size and strongly on presence of relaxation centers (framework AI, Na⁺ cations)

Conditions of optimum PASADENA experiments

- pairwise incorporation of $p-H_2$ into the reactants is required for reaching hyperpolarization (isolated hydrogenation sites?),
- highly mobile product molecules having low relaxation rate (→ low number of strong adsorption sites; large pores; sites at outer particle surface; elevated temperature?),
- the A_2 spin system must be converted into an AX spin system (chemically non-equivalent (Δv) H atoms),
- high ratio of Δv /J improves the observability of the anti-phase signals,
- excitation by $\phi = \pi/4$ pulses because of the density operator $\rho(\phi) \propto \cos(\phi)\sin(\phi) \cdot \mathcal{F}(I_1, I_2)$
- no gaseous oxygen in the flow system (O_2 is paramagnetic; causes p-H₂ to o-H₂ conversion; relaxation of hyperpolarized reactants),
- $p-H_2$: reactant ratio of > 1 and elevated temperature may accelerate hydrogenation with $p-H_2$,
- signal intensity has no explicite dependence on T inside the NMR probe since the enhancement factor

 $\eta = kT(1 - 4a) / (6\gamma_{det} \hbar B_0)$ leads to an intensity proportional to $N\gamma_{det}^{3/2}B_0^{1/2}$ (a: p-H₂ content, γ_{det} : γ of detected nuclei)

Suggested transition state

Pairswise incorporation of p-H₂ into propene at Pt clusters after Scheme 1 of Ref. [1]

