Institute of Chemical Technology

In situ solid-state NMR investigations of the conversion of methanol on acidic zeolites

Michael Hunger

Institute of Chemical Technology University of Stuttgart, Germany

Methanol to olefin (MTO) conversion on acidic zeolites

reaction mechanisms proposed in the literature:

- carbene mechanism (Swabb and Gates)
- oxonium ylide mechanism (Berg and Olah)
- carbon-pool mechanism (Haag, Hoelderich, Kolboe)

H. Schulz, M. Wei, Microporous Mesoporous Mater. 29 (1999) 205.

Examples of nuclei accessible for in situ NMR in heterogeneous catalysis

⁷Li (3/2, 0.27) ¹¹B (3/2, 0.13) ¹⁷O (5/2, 1.1 x 10⁻⁵) ²³Na $(3/2, 9.2 \times 10^{-2})$ ²⁷AI (5/2, 0.21) ²⁹Si (1/2, 3.7 x 10⁻⁴) ³¹P (1/2, 6.6 x 10^{-2}) ⁵¹V (7/2, 0.38) 67 Zn (5/2, 1.2 x 10⁻²) ⁷¹Ga (3/2, 5.6 x 10⁻²) 133 Cs (7/2, 4.7 x 10⁻²)

isotope (nuclear spin, relative sensitivity in comparison with ¹H)

- technique of continuous-flow (CF) MAS NMR spectroscopy
- investigation of the methanol conversion on acidic zeolites under steady state conditions
- role of Broensted acid sites during methanol conversion
- reactivity of surface methoxy groups studied by stopped-flow experiments
- CF MAS NMR/UV Vis spectroscopic studies of the initiation of the methanol to hydrocarbon conversion

Continuous-flow (CF) MAS NMR technique

continuous injection of reactants into a spinning MAS NMR rotor reactor (T < 923 K)

M. Hunger, T. Horvath, J. Chem. Soc., Chem. Commun. (1995) 1423.

Coupling of in situ CF MAS NMR and on-line gas chromatography

M. Hunger et al., Catal. Lett. 57 (1999) 199.

Continuous-flow (CF) MAS NMR technique

A. Buchholz et al., Microporous & Mesoporous Mater. 57 (2003) 157.

Conversion of methanol on H-ZSM-5 in a fixed-bed and in an MAS NMR rotor reactor

A. Buchholz, diploma thesis, University Stuttgart, 2000.

Conversion of methanol on H-ZSM-5 studied by in situ ¹³C CF MAS NMR

M. Seiler, et al., Catal. Lett. 62 (1999) 139.

Conversion of methanol on H-SAPO-34 studied by in situ ¹³C CF MAS NMR

M. Hunger, et al., Catal. Lett. 1-2 (2001) 61.

Role of the carbon pool in the MTO process on H-ZSM-5

switching of the reactant flow induces a decrease of the ¹³C-isotopes in the alkyl groups:

- alkyl groups are involved in the formation of olefins
- carbon pool plays an active role in the MTO process

M. Seiler et al., Catal. Lett. 88 (2003) 187.

State of SiOHAI groups in H-ZSM-5 during the MTO process

M. Seiler et al., J. Phys. Chem. B 105 (2001) 8143.

NMR parameters of ²⁷Al nuclei during the MTO process

reactant / adsorbate	QCC	$\Delta v_{1/2}$ Mas*
calcined H-ZSM-5	16 MHz	36 kHz / 350 ppm
methoxy/H-ZSM-5	13 MHz	25 kHz / 235 ppm
1 CH ₃ OCH ₃ /SiOHAI	11 MHz	17 kHz / 165 ppm
1 CH ₃ OH/SiOHAI	4.4 MHz	2.8 kHz / 26.5 ppm
n H ₂ O/H-ZSM-5	2.0 MHz	0.6 kHz / 5.5 ppm
		*: <i>B</i> ₀ = 9.4 T

→ absence of narrow ²⁷AI MAS NMR signals indicates that no adsorption of CH_3OH and H_2O occurs at SiOHAI groups under reaction conditions

> M. Seiler et al., J. Phys. Chem. B 105 (2001) 8143; Wang et al., Chem. Phys. Lett. 370 (2003) 88.

Study of surface methoxy groups by in situ SF (stopped-flow) MAS NMR

 selective preparation of adsorbate complexes by purging the volatile reactants in period (ii)

investigation of the reactivity of intermediates

W. Wang et al., J. Phys. Chem. B 105 (2001) 12553.

Reaction of methoxy groups with methanol on acidic zeolites

¹³C SF MAS NMR investigation of methoxy groups on zeolite H-Y

¹³C-labelled methoxy groups contribute to the formation of dimethyl ether

W. Wang et al., J. Phys. Chem. B 105 (2001) 12553.

Methylation of aromatics by surface methoxy groups

reaction of methoxy groups with toluene on zeolite H-Y

 methylation of aromatics by surface methoxy groups starts at *T* = 433 K

W. Wang, A. Buchholz, M. Seiler, M. Hunger, J. Am. Chem. Soc. 125 (2003) 15260.

Methylation of alkanes by surface methoxy groups

reaction of methoxy groups with cyclohexane on zeolite H-Y

- methylation of alkanes by surface
 methoxy groups starts at T = 503 K
- intermediates of ylide or carbene nature

W. Wang, A. Buchholz, M. Seiler, M. Hunger, J. Am. Chem. Soc. 125 (2003) 15260.

Initiation of the MTO process by surface methoxy groups on acidic zeolites

141.4 ppm)

132.1 ppm)

stopped-flow conversion of methoxy groups on zeolite H-Y

W. Wang, A. Buchholz, M. Seiler, M. Hunger, J. Am. Chem. Soc. 125 (2003) 15260.

MAS NMR/UV-Vis coupling

installation of a quartz fiber optic at the bottom of a CF MAS NMR turbine

conversion of ${}^{13}CH_{3}OH$ on dealuminated H-ZSM-5 at 423 K

275 nm: neutral aromatic compounds315 nm: monoenyl carbenium ions

375 nm: dienyl carbenium ions450 nm: polyaromatic compounds

M. Hunger, W. Wang, Chem. Commun. (2004) 584.

MAS NMR/UV Vis coupling

conversion of surface methoxy groups on zeolite H-Y

23.8 ppm: isobutane ca. 130 ppm: aromatics **265 nm:** neutral aromatic compounds **440 nm:** polyaromatic compounds

Study of the MTO process on zeolites by *in situ* NMR spectroscopy:

- a mixture of large olefins and aromatic compounds is formed under steady state conditions
- composition of this hydrocarbon pool depends on the reaction conditions and the catalyst
- alkyl groups of the hydrocarbon pool contribute to the conversion of methanol
- surface methoxy groups may be responsible for the formation of first hydrocarbons during the induction period of the MTO process
- aromatics are formed immediately after starting the conversion of methanol and methoxy groups on acidic zeolites

Acknowledgements

Jens Weitkamp

Thomas Horvath Udo Schenk Michael Seiler Wei Wang Andreas Buchholz Mingcan Xu Jian Jiao

Irina Ivanova Alexander Stepanov Ago Samoson Deutsche Forschungsgemeinschaft

Volkswagen-Stiftung Hannover

Max-Buchner-Forschungsstiftung

Fonds der Chemischen Industrie