Characterization of nitrogen-containing adsorbates and reactants on porous catalysts by ^{14/15}N solid-state NMR

Spectroscopic background: ¹⁴N and ¹⁵N nuclei have spins of I = 1 and I = 1/2, natural abundances of 99.6 % and 0.4 %, and, in these states, sensitivities in comparison with ¹H nuclei (1.0) of 1.0 x 10⁻³ and 3.8 x 10⁻⁶, respectively. Due to the low natural abundance of the ¹⁵N isotope, ¹⁵N solid-state NMR spectroscopic studies of catalytic systems require an isotopic enrichment. Because of the quadrupole moment of the ¹⁴N isotope of $Q = 2.04 \times 10^{-30}$ m², quadrupolar interactions are the dominating signal broadening mechanism for these nuclei. Both ¹⁴N and ¹⁵N nuclei have low resonance frequencies, which are often not in the range of standard solid-state NMR probes. In this case, a specific low-frequency NMR probe is required for ¹⁴N and ¹⁵N solid-state NMR investigations. For basic principles of solid-state NMR, see lectures "Solid-State NMR Spectroscopy" for Bachelor students or PhD seminars, accessible via the link "Lectures for Students".

In the research field of heterogeneous catalysis, the application ¹⁴N solid-state NMR spectroscopy is mainly restricted to studies of nitrogen-containing structure

Fig. 1

¹⁴N MAS NMR

1

https://michael-hunger.de

directing agents (SDA) utilized in the synthesis of microporous zeolites [1-6]. Examples are investigations of tetrapropylammonium (TPA⁺) [1-3, 6], tripropylethylammonium, (TPEA⁺) [2, 6], butyltripropylammonium (BTPA⁺) [2], and mixtures of tetraethylammonium (TEA⁺) [4] and tetraethylphosphonium (TEP⁺) [4] cations in MFI-type zeolites and tetraethylammonium (TEA⁺) cations in AIPO₄-5 [5]. One of the aims of these ¹⁴N solid-state NMR studies was the determination of the order or disorder in the local structure of the nitrogen-containing SDAs.

Fig. 1 shows ¹⁴N MAS NMR spectra of as-synthesized Silicalite-1, prepared via the fluoride route with TPABr and NH₄F (F-MFI) and via the alkaline route with TPAOH (OH-MFI), and recorded at a Larmor frequency of $v_0 = 43.3$ MHz and with a MAS rate of $v_{rot} = 2.0$ kHz [1]. In the case of F-MFI, a single ¹⁴N MAS NMR signal with a welldefined spinning sideband (SSB) pattern occurs (Fig. 1a). The simulation of the SSB envelope led to a single ¹⁴N quadrupolar parameter set of $C_{\rm Q}$ = 52.8 kHz and $\eta_{\rm Q}$ = 0.3 [1]. In contrast to F-MFI, the ¹⁴N MAS NMR spectrum of OH-MFI is featureless (Fig. 1b). This kind of spectrum is the result of a distribution of ¹⁴N quadrupolar parameters. The mean ¹⁴N quadrupolar coupling constant was found to be $C_{Q,mean} \cong$ 58 kHz, a value close to the value of C_{Q} = 52.8 kHz found for F-MFI. Therefore, the distribution of the ¹⁴N guadrupolar coupling constants for F-MFI cannot be due to SDA mobility. Otherwise, the $C_{Q,mean}$ value would be significantly smaller. Since the ¹⁴N guadrupolar coupling constant depends on the local geometry of the ¹⁴N sites in the SDAs (TPA⁺), i.e. mainly on the deviation of the C-N-C angles from the tetrahedral symmetry, the featureless ¹⁴N MAS NMR spectrum of OH-MFI in Fig. 1b hints to a local disorder. This local disorder corresponds to a distribution of the C-N-C angles and/or to a distribution of the compensating negative charges in the framework surrounding the TPA⁺ cations [1].

¹⁵N solid-state NMR spectroscopy is utilized in heterogeneous catalysis for the investigation of surface sites by ¹⁵N-enriched probe molecules and of ¹⁵N-enriched reactants for the study of reaction mechanisms. However, because of the high costs of ¹⁵N-enriched chemicals, ¹⁵N solid-state NMR spectroscopy does not find a similar broad application like alternative resonances. For the characterization of surface sites on solid catalysts, ¹⁵N-enriched N₂O, NH₃, pyridine, and acetonitrile are used.

Before ¹⁵N chemical shift values of specific compounds can be considered, some remarks on discrepancies between different shift scales are necessary. According to https://michael-hunger.de

suggestions of Refs. [7] and [8], ¹⁵N chemical shifts in ¹⁵N liquid-state NMR studies are referenced to $\delta_{15N} = 0$ ppm for liquid ¹⁵NH₃ and $\delta_{15N} = 380.6$ ppm for neat CH₃¹⁵NO₂. However, in most of the ¹⁵N solid-state NMR studies, ⁵N chemical shifts are referenced to $\delta_{15N} = 0$ ppm for neat CH₃¹⁵NO₂ and $\delta_{15N} = -380.6$ ppm for liquid ¹⁵NH₃. Therefore, the latter scale is also used for the subsequent presentation and discussion of literature data, sometimes slightly corrected by utilizing more recent values of Ref. [8]. Some groups use own scales, such as $\delta_{15N} = 0$ ppm for solid ¹⁵NH₄Cl [9, 10], $\delta_{15N} = 0$ ppm for ¹⁵NH₄NO₃ solution [11], $\delta_{15N} = 0$ ppm for solid ¹⁵NH₄O₃ [12], $\delta_{15N} = 0$ ppm for NH₄¹⁵NO₃ [13] or $\delta_{15N} = 0$ ppm for liquid ¹⁵NH₃ in ¹⁵N solid-state NMR spectroscopy [14-17]. In these cases, the corresponding ¹⁵N chemical shift values were transformed into the scale with $\delta_{15N} = 0$ ppm for neat CH₃¹⁵NO₂, excluding for the δ_{15N} values of ¹⁵N-acetonitrile in Ref. [13].

Table 1 gives a survey on the application of probe molecules for the investigation of surface sites on various materials by ¹⁵N MAS NMR spectroscopy. In this connection must be mentioned, that the ¹⁵N chemical shift values in **Table 1** are often interpolated to an adsorbate loading of zero or determined at the lowest possible loading. The best loading is a 1 : 1 adsorption at the surface sites under study, which is much easier to control by ¹H MAS NMR spectroscopy compared with ¹⁵N MAS NMR spectroscopy. Otherwise, a rapid exchange of adsorbed and gaseous probe molecules may occur, having a significant influence on the experimentally observed signal positions, already at room temperature.

Probe Molecules	Materials	Compounds / Sites	<i>δ</i> ₁₅/ppm	Refs.
terminale ¹⁵ N	¹⁵ N ₂ O	gaseous	-235.5	[18]
in ¹⁵ N ₂ O	γ -Al ₂ O ₃	at LAS	-210 to -220	[18], [19]
	Na-Y	at LAS	-228.8	[18]
	deal. H-Y	at LAS	-226 to -220	[20]
	Na-ZSM-5	at LAS	-230 to -231	[20], [21]
	H-ZSM-5	at LAS	-221 to -212	[20], [21]
¹⁵ NH ₃	¹⁵ NH ₃	gaseous	-399.9	[22]
	¹⁵ NH ₃	liquid	-380.6	[8]
	¹⁵ NH ₃	physisorbed	-364.0	[9]
	¹⁵ NH ₄ ⁺ NO ₃	1 M solution	-360.0	[8]

https://michael-hunger.de

	¹⁵ NH ₄ ⁺ NO ₃	powder	-358.6	[8]
	V ₂ O ₅ /TiO ₂	strongly	-368.9	[11]
		adsorbed		
	zeolite Na,K-A	site I	-386.4	[23]
	(site loading \cong 1 : 1)	site II	-389.1	[23]
		site III	-385.1	[23]
		site IV	-390.6	[23]
	zeolites Na-A, Na-X, Na-Y (extrapolated to small loadings)		ca395	[22]
	γ -Al ₂ O ₃ , USY	at Al ^{IV}	-365.1±0.5	[9]
		at AI^{\vee}	-373.6±1.5	[9]
	zeolite 88H-Y	at Si(OH)Al	-361	[22]
	(site loading			
¹⁵ N-pyridine	SBA-15	bulk pyridine	-65 to -64	[10], [16]
	SBA-15	at SiOH	-90 to -83	[10]
	titanosilicalite-1	at SiOH	-89	[17]
	titanosilicalite-1	at Ti	-100	[17]
	AIF _x (OH) _{3-x}	at LAS	-123 to -116	[24]
	silica-alumina	at LAS	-117	[14], [15]
	Sn/MFI, Sn/MCM-41	at LAS	-119	[16]
	Sn/Beta	at LAS	-121 to -116	[16]
	AICI _x F _{3-x}	at LAS	-125.5 -138.7	[25]
	[AI]SBA-15	at LAS	-141	[10]
	(SG) _n AICI ₂	at LAS	-145	[26]
	F/Beta	at BAS	-169	[16]
	titanosilicalite-1	at BAS	-169	[17]
	high-surface-AIF ₃	at BAS	-171	[25]
	[AI]SBA-15	at BAS	-174	[10]
	H-ZSM-5	at BAS	-176	[26]
	AIF _x (OH) _{3-x}	at BAS	-178	[24]
	AICI _x F _{3-x}	at BAS	-178	[25]
	silica-alumina	at BAS	-183	[14], [15]
	γ -Al ₂ O ₃	at BAS	-185	[12]
	H-Mordenite	at BAS	-188	[12]

	(silica gel) _n AlCl ₂	at BAS	-188	[26]
¹⁵ N-	H-ZSM-5	physisorbed	-243.4	[13]
acetonitrile	H-ZSM-5	at LAS	-253.9	[13]
	H-ZSM-5	at BAS	-269.2	[13]

LAS: Lewis acid sites BAS: Broensted acid sites

Table 1

In addition to the experimental ¹⁵N solid-state NMR studies of probe molecules, summarized in **Table 1**, quantum-chemical studies of ¹⁵N-pyridine on metal-doped amorphous silicates [27] and ¹⁵N-acetonitrile on various solid acids [28, 29] were performed.

Examples for ¹⁵N solid-state NMR spectroscopic studies of reaction mechanisms in the field of heterogeneous catalysis are the conversion of ¹⁵NH₃ and methanol to methylamines on zeolites H-RHO and H-SAPO-34 [30] or the conversion of ¹⁵NO with different reactants on various ZSM-5 zeolites [31-33]. The reaction, which was most often studied by ¹⁵N solid-state NMR spectroscopy, is the **Beckmann rearrangement of different oximes** on solid catalysts [34-38]. In chemical industry, ε -caprolactam is an important reactant for the production of Polyamid 6 (Perlon). To replace the conventional method for synthesizing ε caprolactam in concentrated sulfuric acid or oleum, the vapor-phase **Beckmann rearrangement of cyclohexanone oxime** to ε -caprolactam on solid catalysts is interesting as an environmentally benign process.

Scheme 1 gives an overview on the suggested **reaction mechanism** as well as experimentally observed (without parenthesis [35, 36]) and calculated (in parenthesis [39]) ¹⁵N chemical shifts [35]. The first steps of the Beckmann rearrangement of cyclohexanone oxime on zeolites are the adsorption of the reactants via hydrogen bonding at SiOH groups in Silicalite-1 (**A**) or the N-protonation of the reactant by hydroxyl groups in zeolites H-ZSM-5 and H-[B]ZSM-5 (**B**). On strong acid sites, a 1,2-H shift leading to O-protonated cyclohexanone oxime **C** is followed by the formation of carbenium ions **D** as intermediates. A more stable state of this intermediate is the nitrilium ion **E**. The calculated ¹⁵N chemical shift of $\delta_{15N} = -224$ ppm for this intermediate indicates that species **E** may be responsible for ¹⁵N NMR signals at δ_{15N} https://michael-hunger.de

= -237 ppm. The further conversion of species **E**, which should be accompanied with a decrease of the signal at δ_{15N} = -237 ppm, leads to the formation of non-protonated and protonated ε -caprolactam (**F** and **G**, respectively) causing ¹⁵N NMR signals at δ_{15N} = -260 ppm and δ_{15N} = -347 ppm, respectively [36].

The *in situ* ¹⁵N CPMAS NMR studies shown in **Fig. 2** were performed under batch conditions (see Section "method 29") and focused on the conversion of ¹⁵N-cyclohexanone oxime (educt, signal $\delta_{15N} = -55$ to 45 ppm) on the zeolites Silicalite-1, H-ZSM-5, and H-[B]ZSM-5 by stepwise heating of the physical mixtures of the reactant and the calcined zeolite catalysts at temperatures between T = 423 and 523 K [34]. According to **Fig. 2a**, the Beckmann rearrangement on Silicalite-1 starts at about T = 473 K, which is indicated by new signals at $\delta_{15N} = -237$ ppm (**E**), -260 (**F**), and -376 ppm. After raising the reaction temperature to T = 498 and 523 K (**Figs. 2b and 2c**), the spectra consist of a single signal at $\delta_{15N} = -260$ ppm (**F**) due to the final product of the Beckmann rearrangement. The signal at $\delta_{15N} = -376$ ppm is a hint for the formation of an amine as a byproduct [34].

The Beckmann rearrangement of ¹⁵N-cyclohexanone oxime on zeolite H-ZSM-5 starts at about T = 423 K (**Fig. 2d**). In addition to the ¹⁵N CPMAS NMR signal of protonated and non-interacting ¹⁵N-cyclohexanone oxime at $\delta_{15N} = -160$ ppm (**B**) and

 $\delta_{15N} = -55$ ppm (**educt**), respectively, a signal at $\delta_{15N} = -347$ ppm (**G**) due to protonated ε -caprolactam occurs. The spectrum in **Fig. 2d** is dominated by a signal at $\delta_{15N} = -237$ ppm (**E**), which already appeared in the spectrum of Silicalite-1 heated at *T* = 473 K (**Fig. 2a**) [34].

A more complicated situation occurs for the Beckmann rearrangement of ¹⁵Ncyclohexanone oxime on zeolite H-[B]ZSM-5 (**Figs. 2g to 2i**). In addition to the ¹⁵N CPMAS NMR signals observed for the conversion of ¹⁵N-cyclohexanone oxime on Silicalite-1 and H-ZSM-5, signals of byproducts occur at $\delta_{15N} = -199$ ppm (protonated 5-cyano-1-pentene), -275 ppm (hydroxylamine), and -364 ppm (ε -aminocaproic acid) [34]. These byproducts are the reason for the loss of the ε -caprolactam selectivity of zeolite H-[B]ZSM-5 after a short time on stream in comparison with Silicalite-1 as described in Ref. [40]. For further information and experimental details, see Section "method 29".

in situ¹⁵N CPMAS NMR

Fig. 2

Catalyst preparation: The samples used for the ¹⁴N MAS NMR studies of SDAs were in the as-synthesized state. The post-treatment of the F-MFI material was done in an autoclave (T = 448 K, 4 days) using a 0.07 wt.-% NH₄OH solution [1]. The preparation procedures of the sample materials utilized for ¹⁵N solid-state NMR

studies of ¹⁵N-enriched probe molecules, summarized in **Table 1**, are very different and described in the corresponding references. For the in situ solid-state NMR studies of the Beckmann rearrangement of ¹⁵N-cyclohexanone oxime, the catalysts were dehydrated inside a "sample tube system 1" at "vacuum line 1", both accessible via link "In Situ Solid-State NMR Techniques". The dehydration starts with an evacuation at room temperature for ca. 10 minutes, followed by a temperature ramp from room temperature to T = 393 K within 2 hours. At this temperature, the sample was dehydrated for 2 hours. Subsequently, the temperature was increased up to T =723 K within 3 hours and the sample was evacuated at this temperature for 12 hours. After this treatment, the sample tube system was closed via the vacuum valve and disconnected from the vacuum line (after this line was ventilated with air). Mixtures of ¹⁵N-cyclohexanone oxime and dehydrated catalysts were prepared as follows. First, 20 mg of ¹⁵N-cyclohexanone oxime was evacuated at room temperature and mixed with ca. 300 mg of dehydrated zeolite in a mini glove box (see Section "mini glove box", accessible via link "In Situ Solid-State NMR Techniques"), purged with dry nitrogen gas. Subsequently, the catalyst loaded with ¹⁵N-cyclohexanone oxime was filled into an MAS NMR glass ampoule (see Section "sample tube system 4", accessible via link "In Situ Solid-State NMR Techniques"), evacuated at room temperature at "vacuum line 2" (see Section "vacuum line 2", accessible via link "In Situ Solid-State NMR Techniques"), and, finally, sealed.

^{14/15}*N* solid-state NMR studies: The¹⁴N MAS NMR spectra shown in Fig. 1 were recorded at a Larmor frequency of $v_0 = 43.3$ MHz, with a $\pi/4$ pulse excitation, and with a MAS rate of $v_{rot} = 2.0$ kHz utilizing 9.5 mm rotors. With a repetition time of 0.5 s, recording of the spectra in Fig. 1a (46.000 scans) and Fig. 1b (98.000 scans) required ca. 6 h and 14 h, respectively [1].

The *in situ* ¹⁵N CPMAS NMR spectra of the catalyst loaded with reactants in **Fig. 2** were recorded at a Bruker MSL 400WB spectrometer at a resonance frequency of v_0 = 40.53 MHz and using a 7 mm Bruker MAS NMR probe with sample spinning rates of v_{rot} = 3.5 to 4.7 kHz. The CPMAS NMR spectra were obtained with a contact time of τ = 5 ms and a recycle delay of 2 s. The ¹⁵N CPMAS NMR spectra were referenced to nitromethane (δ_{15N} = 0.0 ppm).

References:

- E. Dib, T. Mineva, P. Gaveau, B. Alonso, ¹⁴N solid-state NMR: A sensitive probe of the local order in zeolites, Phys. Chem. Chem. Phys. 15 (2013) 18349-18352, DOI: 10.1039/c3cp51845k.
- E. Dib, A. Gimenez, T. Mineva, B. Alonso, *Preferential orientations of structure directing agents in zeolites*, Dalton Trans. 44 (2015) 16680-16683, DOI: 10.1039/C5DT02558C.
- [3] E. Dib, T. Mineva, P. Gaveau, E. Veron, V. Sarou-Kanian, F. Fayon, B. Alonso, *Probing disorder in Al-ZSM-5 zeolites by* ¹⁴N NMR spectroscopy, J. Phys. Chem. C 121 (2017) 15831-15841, DOI: 10.1021/acs.jpcc.7b04861.
- J. Martinez-Ortigosa, J. Simancas, J.A. Vidal-Moya, P. Gaveau, F. Rey, B. Alonso, T. Blasco, *Host-guest and guest-guest interactions of P- and N-containing structure directing agents entrapped inside MFI-type zeolite by multinuclear NMR spectroscopy*, J. Phys. Chem. C 123 (2019) 22324-22334, DOI: 10.1021/acs.jpcc.9b05689.
- J. Xu, Y. Liu, Y. Huang, Ultrafast crystallization of AIPO₄-5 molecular sieve in a deep eutectic solvent, J. Phys. Chem. C 125 (2021) 8876-8889, DOI: 10.1021/acs.jpcc.1c01690.
- [6] M. Fabbiani, S. Al-Nahari, L. Piveteau, E. Dib, V. Veremeienko, A. Gaje, D.G. Dumitrescu, P. Gaveau, T. Mineva, D. Massiot, A. Lee, J. Haines, B. Alonso, *Host-guest silicalite-1 zeolites: Correlated disorder and phase transition inhibition by a small guest modification*, Chem. Mater. 34 (2022) 366-387, DOI: 10.1021/acs.chemmater.1c03721.
- [7] J.L. Markley, A. Bax, Y. Arata, C.W. Hilbers, R. Kaptein, B.D. Sykes, P.E. Wright, K. Wuethrich, *Recommendations for the presentation of NMR structures of proteins and nucleic acids, IUPAC-IUBMB-IUPAB interunion task group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy*, Eur. J. Biochem. 256 (1998) 1-15, DOI: 10.1046/j.1432-1327.1998.2560001.x.
- [8] P. Bertanin, J. Raya, B. Bechinger, ¹⁵N chemical shift referencing in solid state NMR, Solid State Nucl. Magn. Reson. 61-62 (2014) 15-18, DOI: 10.1016/j.ssnmr.2014.03.003.
- [9] D. Coster, A.L. Blumenfeld, J.J. Fripiat, Lewis acid sites and surface aluminum in aluminas and zeolites: A high-resolution NMR study, J. Phys. Chem. 98 (1994) 6201-6211, DOI: 10.1021/j100075a024.
- [10] A.A. Gurinov, Y.A. Rozhkova, A. Zukal, J. Cejka, I.G. Shenderovich, *Mutable Lewis and Broensted acidity of aluminated SBA-15 as revealed by NMR of*

adsorbed pyridine-15N, Langmuir 27 (2011) 12115-12123, DOI: 10.1021/la2017566.

- S. Hu, T.M. Apple, ¹⁵N NMR study of the adsorption of NO and NH₃ on titaniasupported vanadia catalysts, J. Catal. 158 (1996) 199-204, DOI: 10.1006/jcat.1996.0019.
- J.A. Ripmeester, Surface acid site characterization by means of CP/MAS nitrogen-15 NMR, J. Am. Chem. Soc. 105 (1983) 2925-2927, DOI: 10.1021/ja00347a083.
- F. C. Feyen, P. K. Burkert, *Nitrogen-15 and boron-11 NMR spectroscopy of the system acetonitrile / H-ZSM-5*, Z. Naturforsch. B 50 (1995) 1753-1758, DOI: 10.1515/znb-1995-1124.
- G.E. Maciel, J.F. Haw, I.-S. Chuang, B.L. Hawkins, T.A. Early, D.R. McKay, L. Petrakis, *NMR studies of pyridine on silica-alumina*, J. Am. Chem. Soc. 105 (1983) 5529-5535, DOI: 10.1021/ja00355a001.
- [15] J.F. Haw, I.-S. Chuang, B.L. Hawkins, G.E. Maciel, Surface titration of silicaalumina monitored by nitrogen-15 NMR with cross polarization and magicangle spinning, J. Am. Chem. Soc. 105 (1983) 7206-7207, DOI: 10.1021/ja00362a051.
- [16] W.R. Gunther, V.K. Michaelis, R.G. Griffin, Y. Roman-Leshkov, Interrogating the Lewis acidity of metal sites in Beta zeolites with ¹⁵N pyridine adsorption coupled with MAS NMR spectroscopy, J. Phys. Chem. C 120 (2016) 28533-28544, DOI: 10.1021/acs.jpcc.6b07811.
- [17] L. Laetsch, C.J. Kaul, A.V. Yakimov, R. McEntee, T. De Baerdemaeker, A.-N. Parvulescu, K. Seidel, J.H. Teles, C. Copéret, *Nature of reactive sites in TS-1* from ¹⁵N solid-state NMR and Ti K-edge X-ray absorption spectroscopic signatures upon pyridine adsorption, J. Am. Chem. Soc. 146 (2024) 29675-29683, DOI: 10.1021/jacs.4c10604.
- [18] V.M. Mastikhin, I.L. Mudrakovsky, S.V. Filimonova, *Probing the Lewis acidity of heterogeneous catalysts by* ¹⁵N NMR of adsorbed N₂O, Chem. Phys. Lett. 149 (1988) 175-179, DOI: 10.1016/0009-2614(88)87217-8.
- [19] S.V. Filimonova, V.M. Mastikhin, Probing the surface acidity of modified γalumina with ¹H and ¹⁵N high-resolution solid state NMR spectroscopy, React. Kinet. Catal. Lett. 65 (1998) 131-138, DOI: 10.1007/BF02475326.
- [20] V.M. Mastikhin, I.L. Mudrakovsky, S.V. Filimonova, Testing of the Lewis acidity of H-Y and HZSM-5 zeolites with ¹⁵N n.m.r. of adsorbed N₂O, Zeolites 10 (1990) 593-597, DOI: 10.1016/S0144-2449(05)80318-5.
- [21] V. M. Mastikhin, S. V. Filimonova, I. L. Mudrakovsky, V. N. Romannikov, Role of iron impurities in formation of electron-accepting sites in H-ZSM-5 zeolites: ¹⁵N nuclear magnetic resonance and ¹⁵N nuclear magnetic relaxation

of adsorbed N₂ and N₂O, J. Chem. Soc., Faraday Trans. 87 (1991) 2247-2252, DOI: 10.1039/ft9918702247.

- [22] D. Michel, A. Germanus, H. Pfeifer, Nitrogen-15 nuclear magnetic resonance spectroscopy of adsorbed molecules, J. Chem. Soc., Faraday Trans. 78 (1982) 237-254, DOI: 10.1039/f19827800237.
- G.P. Holland, B.R. Cherry, T.M. Alam, ¹⁵N solid-state NMR characterization of [23] ammonia adsorption environments in 3A zeolite molecular sieves, J. Phys. Chem. B 108 (2004) 16420-16426, DOI: 10.1021/jp047884j.
- F. Hemmann, G. Scholz, K. Scheurell, E. Kemnitz, C. Jaeger, Time-optimized [24] ¹⁵N qNMR determination of Lewis and Broensted site concentrations and chemical bonding of pyridine at Broensted sites in amorphous aluminum hydroxide fluoride, J. Phys. Chem. C 116 (2012) 10580-10585, DOI: 10.1021/jp212045w.
- [25] B. Calvo, C.P. Marshall, T. Krahl, J. Kroehnert, A. Trunschke, G. Scholz, T. Braun, E. Kemnitz, Comparative study of the strongest solid Lewis acids known: ACF and HS-AIF₃, Dalton Trans. 47 (2018) 16461-16473, DOI: 10.1039/c8dt03279c.
- [26] T. Xu, N. Kob, R.S. Drago, J.B. Nicholas, J.F. Haw, A solid acid catalyst at the threshold of superacid strength: NMR, calorimetry, and density functional theory studies of silica-supported aluminum chloride, J. Am. Chem. Soc. 119 (1997) 12231-12239, DOI: 10.1021/ja970850n.
- A. Jystad, H. Leblanc, M. Caricato, Surface acidity characterization of metal-[27] doped amorphous silicates via Py-FTIR and ¹⁵N NMR simulations, J. Phys. Chem. C 124 (2020) 15231-15240, DOI: 10.1021/acs.jpcc.0c03292.
- [28] A. Simperler, R.G. Bell, M.W. Anderson, Probing the acid strength of Broensted acidic zeolites with acetonitrile: Quantum chemical calculation of ¹H, ¹⁵N, and ¹³C NMR shift parameters, J. Phys. Chem. B 108 (2004) 7142-7151, DOI: 10.1021/jp035674I.
- D. Yi, H. Zhang, Z. Deng, ¹H and ¹⁵N chemical shifts of adsorbed acetonitrile [29] as measures to probe the Broensted acid strength of solid acids: A DFT study, J. Mol. Catal. A: Chemical 326 (2010) 88-93, DOI: 10.1016/j.molcata.2010.04.012.
- A. Thursfield, M.W. Anderson, J. Dwyer, G.J. Hutchings, D. Lee, ¹³C and ¹⁵N [30] solid-state MAS NMR study of the conversion of methanol and ammonia over H-RHO and H-SAPO-34 microporous catalysts, J. Chem. Soc., Faraday Trans. 94 (1998) 1119-1122, DOI: 10.1039/a709294f.
- V.M. Mastikhin, S.V. Filimonova, ¹⁵N nuclear magnetic resonance studies of [31] the NO-O₂-NH₃ reaction over ZSM-5 zeolites, J. Chem. Soc., Faraday Trans. 88 (1992) 1473-1476, DOI: 10.1039/FT9928801473.

- [32] S.V. Filimonova, V.M. Mastikhin, ¹⁵N NMR studies of the NO-NH₃-O₂ reaction over ZSM-5 type zeolites and vanadia supported catalysts, React. Kinet. Catal. Lett. 54 (1995) 419-426, DOI: 10.1007/BF02071035.
- [33] J. Wu, S.C. Larsen, ¹⁵N solid state NMR study of the reactions of propane or propene, ¹⁵NO and oxygen on Na-, H-, and CuZSM-5, Catal. Lett. 70 (2000) 43-50, DOI: 10.1023/A:1019091906005.
- [34] V.R. Reddy Marthala, Y. Jiang, J. Huang, W. Wang, R. Glaser, M. Hunger, Beckmann rearrangement of ¹⁵N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy, J. Am. Chem. Soc. 128 (2006) 14812-14813, DOI: 10.1021/ja066392c.
- [35] A.B. Fernández, I. Lezcano-Gonzalez, M. Boronat, T. Blasco, A. Corma, NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials, J. Catal. 249 (2007) 116-119, DOI: 10.1016/j.jcat.2007.03.030.
- [36] V.R. Reddy Marthala, S. Rabl, J. Huang, B. Thomas, M. Hunger, In situ solidstate NMR investigations of the vapor-phase Beckmann rearrangement of ¹⁵Ncyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive ¹³C-methanol, J. Catal. 257 (2008) 134-141, DOI: 10.1016/j.jcat.2008.04.014
- [37] A.B. Fernandez, I. Lezcano-Gonzalez, M. Boronat, T. Blasco, A. Corma, Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy, Phys. Chem. Chem. Phys. 11 (2009) 5134-5141, DOI: 10.1039/b816276j.
- [38] T. Blasco, A. Corma, S. Iborra, I. Lezcano-González, R. Montón, In situ multinuclear solid-state NMR spectroscopy study of Beckmann rearrangement of cyclododecanone oxime in ionic liquids: The nature of catalytic sites, J. Catal. 275 (2010) 78-83, DOI: 10.1016/j.jcat.2010.07.016.
- [39] NNMR Predictor & dB 9.0, Advanced Chemistry Development, Inc.: Toronto, Ontario, Canada.
- [40] L. Forni, E. Patriachi, G. Fornasari, F. Trifiro, A. Katovic, G. Giordano, J.B. Nagy, *Synthesis of porous catalysts for Beckmann rearrangement of oximes*, Stud. Surf. Sci. Catal. 155 (2005) 281-290, DOI: 10.1016/S0167-2991(05)80156-9.