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Method for the determination of the strength, density, and location of 

Broensted acid sites by adsorption of trimethylphosphine oxide  

and 31P MAS NMR 

 

Spectroscopic background: Trimethylphosphine oxide (TMPO) is a useful 

molecular probe for characterizing the strength and location of Broensted acid sites 

on solid catalysts [1-10]. Bulk TPMO causes a narrow 31P MAS NMR signal at 31P = 

41 ppm [9, 11], while a resonance shift of the 31P MAS NMR signal to 31P = 37 ppm 

was observed for physisorbed TMPO under steric restrictions on silica surfaces [12].  

DFT calculations have shown that the 31P chemical shift of TMPO (31P(TMPO)) 

adsorbed at well-accessible Broensted acidic hydroxyl groups on solid catalysts 

(Cat(OH)ac) correlates with the proton affinity (PA in kcal/mol) of these surface sites 

(Eq. (8) in Ref. [13]):  

 

31P(TMPO) / ppm = 182.87 - 0.390 x PA      (1) 

 

Typically, the experimentally observed 31P MAS NMR shift range of TMPO adsorbed 

via hydrogen bonds at well accessible Broensted acid sites: 

  

Cat(OH)ac   +  P(CH3)3O  →  Cat(OH)ac
….

OP(CH3)3     (2) 

 

is 31P = 60 to 70 ppm. For adsorption of TMPO at Broensted acidic OH groups in 

small pores or cages, such as in the small sodalite cages of zeolite Y, a high-field 

shift by approximately 31P = 10 to ca. 55 ppm occurs [7]. This sterically induced high-

field shift of the 31P MAS NMR signals of physisorbed TMPO is the reason for the 

potential of this method for studying the spatial distribution of hydroxyl groups in 

microporous catalysts.  

In the presence of superacidic Broensted sites, able to protonate TMPO 

molecules: 

   Cat(OH)ac  +  P(CH3)3O  →  Cat(O)-  +  P(CH3)3OH+     (3) 

31P MAS NMR signals occur at 31P = 87.7 to 92.1 ppm, such as observed for 

TMPO-loaded heteropoly acids [14].  
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For the quantitative evaluation of 31P MAS NMR signal intensities of TMPO 

molecules adsorbed at Broensted acid sites, the procedure described by Eq. (3) in 

Section “method 1” is utilized. As an intensity standard, a well-known 

aluminosphosphate-type zeolite, such as VPI-5, is suitable.   

Utilizing TMPO, the spatial distribution of bridging OH groups (Si(OH)Al) in noble 

metal-loaded zeolites Y was investigated by 31P MAS NMR spectroscopy (Fig. 1 and 

Fig. 5 in Ref. [7]). Si(OH)Al groups in zeolites Y can be located in small sodalite 

cages with 6-ring windows with a diameter of 0.22 nm or in large supercages with an 

inner diameter of 1.2 nm and 12-ring windows with a diameter of 0.74 nm. For the 

assignment of TMPO interacting with Si(OH)Al groups in these cages of zeolites Y, a 

homologous series of H,Na-Y zeolites, prepared by ammonium exchange (exchange 

degrees of 10, 20, 30 and 80%) and deammoniation, was loaded with TMPO and 

investigated by 31P MAS NMR spectroscopy (Fig. 1). It is well-accepted that 

ammonium exchange of zeolite Na-Y with a low exchange degree (< 50%) leads to a  

 

 

Fig. 1 

31P MAS NMR 
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preferential formation of Si(OH)Al groups in the large supercages, before formation of 

these hydroxyl groups occurs in the small sodalite cages at higher exchange degrees 

(see Figs. 4 and 5 in Ref. [15]). The 31P MAS NMR spectrum of the TMPO-loaded 

zeolite 0.1H,Na-Y in Fig. 1a consists of a strong signal of bulk TMPO at 31P = 42 

ppm and TMPO physisorbed at Na+ cations at 31P = 48 ppm. The weak signal at 31P 

= 66 ppm is due to a small amount of TMPO interacting with Si(OH)Al groups located 

in the large supercages of zeolite 0.1H,Na-Y. With increasing ammonium exchange 

degree of up to 80%, the 31P MAS NMR signals at 31P = 66 ppm in Figs. 1b to 1d 

increase and additional signals occur at 31P = 56 ppm, which are assigned to 

Si(OH)Al groups in the small sodalite cages. The latter signals are high-field shifted 

due to the steric restrictions for the interaction of TMPO with Si(OH)Al groups in the 

small cages.  

For reviews on the above-mentioned topics, see Refs. [16], [17], and [18]. 

 

Catalyst preparation: Before the 31P MAS NMR studies, a standard dehydration of 

the solid catalyst inside a “sample tube system 1“ at “vacuum line 1” (see Sections 

“sample tube system 1“ and “vacuum line 1“, accessible via link “In Situ Solid-State 

NMR Techniques”) was performed. The dehydration starts with an evacuation at 

room temperature for ca. 10 minutes followed by a temperature ramp from room 

temperature to T = 393 K within 2 hours. At this temperature, the sample was 

dehydrated for 2 hours. Subsequently, the temperature was increased up to T = 723 

K within 3 hours and the sample was evacuated at this temperature for 12 hours. 

After this treatment, the sample tube system was closed via the vacuum valve and 

disconnected from the vacuum line (after this line was ventilated with air).  

For studies as those demonstrated in Fig. 1, loading of dehydrated solid catalysts 

with TMPO of Alfa Aesar was performed by mixing of ca. 50 mg dehydrated solid 

catalyst with ca. 10 mg TMPO inside an MAS NMR rotor in a mini glove box (see 

Section “mini glove box”, accessible via link “In Situ Solid-State NMR Techniques”), 

purged with dry nitrogen gas. Subsequently, the rotor was sealed with an O-ring-

containing TORLON cap and heated at T = 433 K for 2 h for reaching a proper 

distribution of the TMPO on the catalyst surface. For alternative preparation routes of 

TMPO-loaded catalyst samples, see Ref. [13]. 
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31P MAS NMR studies: The above-mentioned 31P MAS NMR measurements were 

carried out at a Bruker Avance III 400WB spectrometer with a resonance frequency 

of 0 = 161.9 MHz and using a 4 mm MAS NMR probe with a sample spinning rate of 

rot = 10 kHz. The spectra were recorded upon single pulse /2 excitation with a 

repetition time of 30 s and high-power proton decoupling (HPDEC). Chemical shifts 

were referenced to 0.85 M H3P04 (31P = 0 ppm). 
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