Characterization of vanadium-containing catalysts by ⁵¹V solid-state NMR

Spectroscopic background: 51 V nuclei have a spin of I = 7/2 and a quadrupole moment of $Q = -5.2 \times 10^{-30} \text{ m}^2$. Therefore, 51 V NMR signals of vanadium atoms in solids are affected by quadrupolar interactions. Due to the large electron valence shells of vanadium atoms, the anisotropic chemical shielding is an additional strong solid-state interaction. The 51 V isotope has a natural abundance of 99.75 % and, in this state, a sensitivity of 0.38 in comparison with 1 H nuclei (1.0), making this isotope a suitable candidate for NMR studies of solids. For basic principles of solid-state NMR, see lectures "Solid-State NMR Spectroscopy" for Bachelor students or PhD seminars, accessible via the link "Lectures for Students".

Vanadium phosphates, such as vanadyl orthophosphates (VOPO₄) and vanadyl pyrophosphate ((VO)₂P₂O₇) containing V⁵⁺ and V⁴⁺ species, respectively, are important materials utilized as catalysts in heterogeneous catalysis. While V⁵⁺ species are diamagnetic and accessible for ⁵¹V solid-state NMR, V⁴⁺ species are paramagnetic and accessible in an indirect manner only, e.g. via ³¹P solid-state NMR of phosphorus atoms in the direct vicinity of the V⁴⁺ species (see Fig. 4 in Ref. [1]). ⁵¹V solid-state NMR signals in the spectra of V⁵⁺-containing solids may be characterized by chemical shift anisotropies $\Delta \mathcal{E}_{51V,cs}$ of up to 1000 ppm, which requires an increased effort by the identification of the MAS central line in MAS NMR spectra. The strength of the quadrupolar interactions of V⁵⁺ species, on the other hand, is weak to moderate (Table 1 and Table 5 in Ref. [2]).

Materials	$\delta_{ m 51V,iso}$ / ppm	$\Delta\delta_{ extsf{51V,cs}}$ / ppm	$\eta_{ extstyle 51V,cs}$	C _Q / MHz	ηα	Refs.
V ₂ O ₅	-609	645	0.11	0.80	0.00	[9]
	-609	620	0.15	0.81	0.04	[10]
α _{II} -VOPO ₄	-776	582	0.67	0.83	0.52	[2, 8]
	-755	922	0.08	0.63	0.09	[2, 6]
γ-VOPO₄/1	-755	855	0.15	0.5	0.68	[2, 8]
γ-VOPO ₄ /2	-739	942	0.07	1.32	0.55	[2, 8]
β-VOPO ₄	-755	818	0.00	1.99	0.59	[2, 8]
	-735	818	0.05	1.45	0.44	[2, 6]

α _I -VOPO ₄	-691	820	0.00	1.55	0.55	[2, 6]
20VPO/SBA-15	-693	830	0.07	1.99	0.71	[1]
60VPO/SBA-15	-737, -764	900	0.10	1.99	0.59	[1]

Table 1

As an example, 51 V MAS NMR spectra of an activated V⁵⁺-containing VPO catalyst, grafted on mesoporous SBA-15 material (60 wt.-% VPO, denoted 60VPO/SBA-15), are shown in **Fig. 1** [1]. The catalyst activation was performed in dry synthetic air at *T* = 678 K for 15 h with a subsequent sample transfer into the MAS NMR rotor without air contact (from the sealed reactor inside a glove box). For obtaining evaluable sideband patterns and for assigning the MAS central line, these spectra were recorded with sample spinning rates of ν_{rot} = 6.5 kHz, 8.0 kHz, 10.0 kHz, as well as 30.0 kHz. The spectra are a superposition of the patterns of different compounds with isotropic chemical shifts ($\delta_{\text{51V,iso}}$ values in **Table 1**) of $\delta_{\text{51V,iso}}$ = 737 ppm and 765 ppm. Comparison of the NMR spectroscopic data obtained for the activated 60VPO/SBA-15 catalysts with those of the reference materials in **Table 1** indicates that the NMR observable V⁵⁺ species correspond to those of α_{II^-} and β -VOPO₄ phases [1].

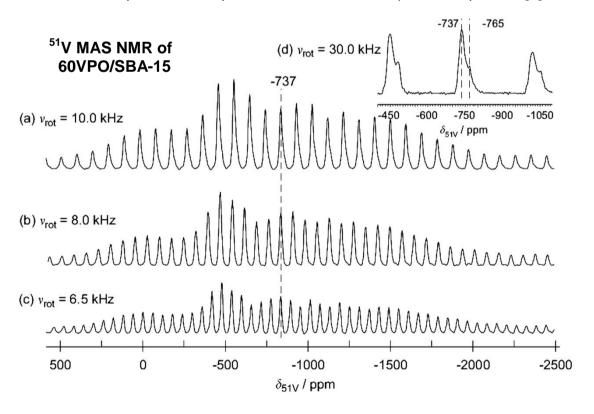


Fig. 1

In the industrial chemistry, vanadium phosphate oxide (VPO) catalysts are utilized for the selective oxidation of n-butane to maleic anhydride (MA) with a maximum MA yield of 65% and an n-butane conversion of up to 85% (Scheme 1) [1]. In this case, the oxygen atoms incorporated into n-butane are delivered by the V^{5+} -

n-butane maleic anhydride
$$C_4H_{12} + 3.5 O_2 \xrightarrow{\text{VPO}} + 4 H_2O$$

Scheme 1

containing vanadyl orthophosphates (VOPO₄). For omitting total oxidation of n-butane to CO₂, there is no oxygen in the gas phase at this reaction step. This so-called selective oxidation step transforms the V^{5+} -containing vanadyl orthophosphates (VOPO₄) into V^{4+} -containing vanadyl pyrophosphate ((VO)₂P₂O₇). After the selective oxidation of n-butane to maleic anhydride, the n-butane flow is stopped and the catalyst is reoxidized to vanadyl by purging with gaseous oxygen at elevated temperatures [3]. In **Fig. 2**, the conversion X of n-butane (\bullet), the selectivity S to maleic anhydride (\bigcirc), the yield Y of maleic anhydride (\bigcirc), and the V^{4+} -sensitive UV/Vis absorption at ca. 400 nm (\blacktriangle) are plotted for the selective oxidation of

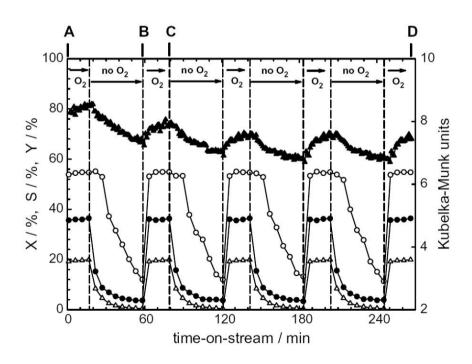


Fig. 2

n-butane on 60VPO/SBA-15 at T = 678 K. This catalytic study was performed using synthetic air or nitrogen loaded with n-butane in the periods assigned 'O₂' and 'no O₂', respectively [3].

In **Fig. 3**, the ⁵¹V MAS NMR spectra of catalyst samples are depicted, which were taken without air contact (*vide supra*) at the reaction times **A**, **B**, **C**, and **D**, marked in **Fig. 2** [3]. While the signal at $\delta_{51V} = 735$ ppm dominates the spectra of sample **A**, this signal disappears in the spectra of sample **B** and appears again as weak signals

⁵¹V MAS NMR of 60VPO/SBA-15

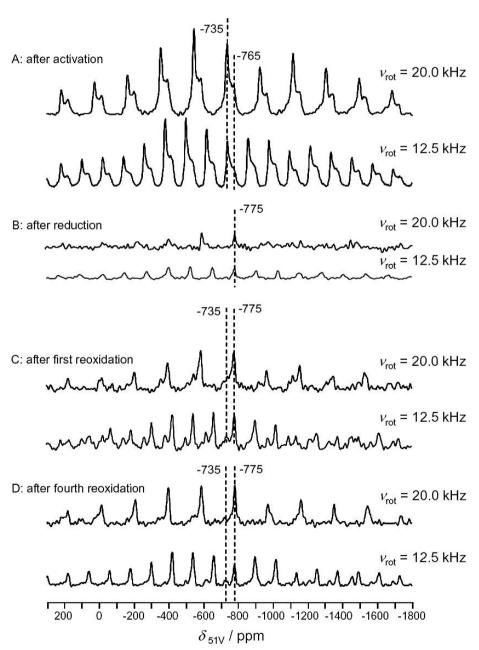


Fig. 3

in the spectra of samples $\bf C$ and $\bf D$. The signal at $\delta_{51V}=770$ ppm exists also in the spectra of the completely reduced sample $\bf B$ and shows a weak increase in the spectra of samples $\bf C$ and $\bf D$. The comparison of the ^{51}V MAS NMR spectra of the 60VPO/SBA-15 samples $\bf A$ to $\bf D$ indicates a strong decrease of the signal intensities upon reduction of the activated catalyst (sample $\bf A \rightarrow$ sample $\bf B$) and a significant increase of the intensities after reoxidation (sample $\bf B \rightarrow$ sample $\bf C$ and sample $\bf D$). Hence, the changes in the total intensities of the ^{51}V MAS NMR signals are due to the transformation of V^{5+} into V^{4+} species and *vice versa*. The assignments of the ^{51}V MAS NMR signals in **Fig. 3** correspond to those for the spectra in **Fig. 1** (*vide supra*). For further ^{51}V solid-state NMR studies of vanadium-containing solid catalysts, see Refs. [2] and [4-8].

Catalyst preparation: The synthesis and activation of the 60VPO/SBA-15 samples were performed as described elsewhere [1, 3]. After their activation or catalytic application, these samples were transferred into the MAS rotors without air contact in a mini glove box (see Section "mini glove box", accessible via the link "In Situ Solid-State NMR Techniques"), purged with dry nitrogen gas.

⁵¹V solid-state NMR studies: The ⁵¹V MAS NMR spectra were recorded using 4 mm and 2.5 mm MAS NMR probes at the resonance frequency of ν_0 = 105.25 MHz, using single pulse excitation of 0.61 μs (π /8), and with the repetition time of 0.5 s. Due to the distribution of the signal intensities over broad MAS NMR sideband patterns, 16000 free induction decays were collected for each spectrum. Chemical shifts are referenced to vanadinite (δ_{51V} = -507.7 ppm).

References:

- [1] J. Frey, Y.S. Ooi, B. Thomas, V.R. Reddy Marthala, A. Bressel, T. Schoelkopf, T. Schleid, M. Hunger, Vanadium phosphates on mesoporous supports: Model catalysts for solid-state NMR studies of the selective oxidation of n-butane, Solid State Nucl. Magn. Reson. 35 (2009) 130-137, DOI: 10.1016/j.ssnmr.2009.02.005
- [2] O.B. Lapina, D.F. Khabibulin, A.A. Shubin, V.V. Terskikh, Practical aspects of ⁵¹V and ⁹³Nb solid-state NMR spectroscopy and applications to oxide materials, Progress in Nuclear Magnetic Resonance Spectroscopy 53 (2008) 128-191, DOI: 10.1016/j.pnmrs.2007.12.001.

- [3] J. Frey, C. Lieder, T. Schoelkopf, T. Schleid, U. Nieken, E. Klemm, M. Hunger, Quantitative solid-state NMR investigation of V⁵⁺ species in VPO catalysts upon sequential selective oxidation of n-butane, J. Catal. 272 (2010) 131-139, DOI: 10.1016/j.icat.2010.03.004.
- [4] A.A. Shubin, O.B. Lapina, V.M. Bondareva, *Characterisation of strongly bonded V(V) species in VO_x/TiO₂ catalyst by static and MAS solid-state ⁵¹V NMR spectroscopy*, Chem. Phys. Lett. 302 (1999) 341-346, DOI: 10.1016/S0009-2614(99)00103-7.
- [5] A.A. Shubin, O.B. Lapina, D. Courcot, Characterization by solid state ⁵¹V NMR spectroscopy, Catal. Today 56 (2000) 379-387, DOI: 10.1016/S0920-5861(99)00298-9.
- [6] O.B. Lapina, D.F. Khabibulin, A.A. Shubin, V.M. Bondareva, ⁵¹V and ³¹P NMR studies of VO_x/TiO₂ catalysts modified by phosphorous, J. Mol. Catal. A: Chemical 162 (2000) 381-390, DOI: 10.1016/S1381-1169(00)00305-8.
- [7] O.B. Lapina, A.A. Shubin, D.F. Khabibulin, V.V. Terskikh, P.R. Bodart, J.-P. Amoureux, Solid-state ⁵¹V NMR for characterization of vanadium-containing systems, Catal. Today 78 (2003) 91-104, DOI: 10.1016/S0920-5861(02)00299-7.
- [8] R. Siegel, N. Dupre, M. Quarton, J. Hirschinger, ⁵¹V magic angle spinning NMR in VOPO₄ phases, Magn. Reson. Chem. 42 (2004) 1022-1026, DOI: 10.1002/mrc.1485.
- [9] J. Skibsted, N.C. Nielsen, H. Bildsøe, H.J. Jakobsen, ⁵¹V MAS NMR spectroscopy: determination of quadrupole and anisotropic shielding tensors, including the relative orientation of their principal-axis systems, Chem. Phys. Lett. 188 (1992) 405-412, DOI: 10.1016/0009-2614(92)80838-3.
- [10] C. Fernandez, P. Bodart, J.-P. Amoureux, *Determination of* ⁵¹*V quadrupole* and chemical shift tensor orientations in V₂O₅ by analysis of magic-angle spinning nuclear magnetic resonance spectra, Solid State Nucl. Magn. Reson. 3 (1994) 79-91, DOI: 10.1016/0926-2040(94)90026-4.